Description: The least common multiple of three and two is six. In contrast to 3lcm2e6 , this proof does not use the property of 2 and 3 being prime, therefore it is much longer. (Contributed by Steve Rodriguez, 20-Jan-2020) (Revised by AV, 27-Aug-2020) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | 3lcm2e6woprm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3cn | |
|
2 | 2cn | |
|
3 | 1 2 | mulcli | |
4 | 3z | |
|
5 | 2z | |
|
6 | lcmcl | |
|
7 | 6 | nn0cnd | |
8 | 4 5 7 | mp2an | |
9 | 4 5 | pm3.2i | |
10 | 2ne0 | |
|
11 | 10 | neii | |
12 | 11 | intnan | |
13 | gcdn0cl | |
|
14 | 13 | nncnd | |
15 | 9 12 14 | mp2an | |
16 | 9 12 13 | mp2an | |
17 | 16 | nnne0i | |
18 | 15 17 | pm3.2i | |
19 | 3nn | |
|
20 | 2nn | |
|
21 | 19 20 | pm3.2i | |
22 | lcmgcdnn | |
|
23 | 22 | eqcomd | |
24 | 21 23 | mp1i | |
25 | divmul3 | |
|
26 | 24 25 | mpbird | |
27 | 26 | eqcomd | |
28 | 3 8 18 27 | mp3an | |
29 | gcdcom | |
|
30 | 4 5 29 | mp2an | |
31 | 1z | |
|
32 | gcdid | |
|
33 | 31 32 | ax-mp | |
34 | abs1 | |
|
35 | 33 34 | eqtr2i | |
36 | gcdadd | |
|
37 | 31 31 36 | mp2an | |
38 | 1p1e2 | |
|
39 | 38 | oveq2i | |
40 | 35 37 39 | 3eqtri | |
41 | gcdcom | |
|
42 | 31 5 41 | mp2an | |
43 | gcdadd | |
|
44 | 5 31 43 | mp2an | |
45 | 40 42 44 | 3eqtri | |
46 | 1p2e3 | |
|
47 | 46 | oveq2i | |
48 | 45 47 | eqtr2i | |
49 | 30 48 | eqtri | |
50 | 49 | oveq2i | |
51 | 3t2e6 | |
|
52 | 51 | oveq1i | |
53 | 6cn | |
|
54 | 53 | div1i | |
55 | 52 54 | eqtri | |
56 | 28 50 55 | 3eqtri | |