Metamath Proof Explorer


Theorem 3lcm2e6woprm

Description: The least common multiple of three and two is six. In contrast to 3lcm2e6 , this proof does not use the property of 2 and 3 being prime, therefore it is much longer. (Contributed by Steve Rodriguez, 20-Jan-2020) (Revised by AV, 27-Aug-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion 3lcm2e6woprm 3lcm2=6

Proof

Step Hyp Ref Expression
1 3cn 3
2 2cn 2
3 1 2 mulcli 32
4 3z 3
5 2z 2
6 lcmcl 323lcm20
7 6 nn0cnd 323lcm2
8 4 5 7 mp2an 3lcm2
9 4 5 pm3.2i 32
10 2ne0 20
11 10 neii ¬2=0
12 11 intnan ¬3=02=0
13 gcdn0cl 32¬3=02=03gcd2
14 13 nncnd 32¬3=02=03gcd2
15 9 12 14 mp2an 3gcd2
16 9 12 13 mp2an 3gcd2
17 16 nnne0i 3gcd20
18 15 17 pm3.2i 3gcd23gcd20
19 3nn 3
20 2nn 2
21 19 20 pm3.2i 32
22 lcmgcdnn 323lcm23gcd2=32
23 22 eqcomd 3232=3lcm23gcd2
24 21 23 mp1i 323lcm23gcd23gcd2032=3lcm23gcd2
25 divmul3 323lcm23gcd23gcd20323gcd2=3lcm232=3lcm23gcd2
26 24 25 mpbird 323lcm23gcd23gcd20323gcd2=3lcm2
27 26 eqcomd 323lcm23gcd23gcd203lcm2=323gcd2
28 3 8 18 27 mp3an 3lcm2=323gcd2
29 gcdcom 323gcd2=2gcd3
30 4 5 29 mp2an 3gcd2=2gcd3
31 1z 1
32 gcdid 11gcd1=1
33 31 32 ax-mp 1gcd1=1
34 abs1 1=1
35 33 34 eqtr2i 1=1gcd1
36 gcdadd 111gcd1=1gcd1+1
37 31 31 36 mp2an 1gcd1=1gcd1+1
38 1p1e2 1+1=2
39 38 oveq2i 1gcd1+1=1gcd2
40 35 37 39 3eqtri 1=1gcd2
41 gcdcom 121gcd2=2gcd1
42 31 5 41 mp2an 1gcd2=2gcd1
43 gcdadd 212gcd1=2gcd1+2
44 5 31 43 mp2an 2gcd1=2gcd1+2
45 40 42 44 3eqtri 1=2gcd1+2
46 1p2e3 1+2=3
47 46 oveq2i 2gcd1+2=2gcd3
48 45 47 eqtr2i 2gcd3=1
49 30 48 eqtri 3gcd2=1
50 49 oveq2i 323gcd2=321
51 3t2e6 32=6
52 51 oveq1i 321=61
53 6cn 6
54 53 div1i 61=6
55 52 54 eqtri 321=6
56 28 50 55 3eqtri 3lcm2=6