Metamath Proof Explorer


Theorem 3lcm2e6woprm

Description: The least common multiple of three and two is six. In contrast to 3lcm2e6 , this proof does not use the property of 2 and 3 being prime, therefore it is much longer. (Contributed by Steve Rodriguez, 20-Jan-2020) (Revised by AV, 27-Aug-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion 3lcm2e6woprm 3 lcm 2 = 6

Proof

Step Hyp Ref Expression
1 3cn 3
2 2cn 2
3 1 2 mulcli 3 2
4 3z 3
5 2z 2
6 lcmcl 3 2 3 lcm 2 0
7 6 nn0cnd 3 2 3 lcm 2
8 4 5 7 mp2an 3 lcm 2
9 4 5 pm3.2i 3 2
10 2ne0 2 0
11 10 neii ¬ 2 = 0
12 11 intnan ¬ 3 = 0 2 = 0
13 gcdn0cl 3 2 ¬ 3 = 0 2 = 0 3 gcd 2
14 13 nncnd 3 2 ¬ 3 = 0 2 = 0 3 gcd 2
15 9 12 14 mp2an 3 gcd 2
16 9 12 13 mp2an 3 gcd 2
17 16 nnne0i 3 gcd 2 0
18 15 17 pm3.2i 3 gcd 2 3 gcd 2 0
19 3nn 3
20 2nn 2
21 19 20 pm3.2i 3 2
22 lcmgcdnn 3 2 3 lcm 2 3 gcd 2 = 3 2
23 22 eqcomd 3 2 3 2 = 3 lcm 2 3 gcd 2
24 21 23 mp1i 3 2 3 lcm 2 3 gcd 2 3 gcd 2 0 3 2 = 3 lcm 2 3 gcd 2
25 divmul3 3 2 3 lcm 2 3 gcd 2 3 gcd 2 0 3 2 3 gcd 2 = 3 lcm 2 3 2 = 3 lcm 2 3 gcd 2
26 24 25 mpbird 3 2 3 lcm 2 3 gcd 2 3 gcd 2 0 3 2 3 gcd 2 = 3 lcm 2
27 26 eqcomd 3 2 3 lcm 2 3 gcd 2 3 gcd 2 0 3 lcm 2 = 3 2 3 gcd 2
28 3 8 18 27 mp3an 3 lcm 2 = 3 2 3 gcd 2
29 gcdcom 3 2 3 gcd 2 = 2 gcd 3
30 4 5 29 mp2an 3 gcd 2 = 2 gcd 3
31 1z 1
32 gcdid 1 1 gcd 1 = 1
33 31 32 ax-mp 1 gcd 1 = 1
34 abs1 1 = 1
35 33 34 eqtr2i 1 = 1 gcd 1
36 gcdadd 1 1 1 gcd 1 = 1 gcd 1 + 1
37 31 31 36 mp2an 1 gcd 1 = 1 gcd 1 + 1
38 1p1e2 1 + 1 = 2
39 38 oveq2i 1 gcd 1 + 1 = 1 gcd 2
40 35 37 39 3eqtri 1 = 1 gcd 2
41 gcdcom 1 2 1 gcd 2 = 2 gcd 1
42 31 5 41 mp2an 1 gcd 2 = 2 gcd 1
43 gcdadd 2 1 2 gcd 1 = 2 gcd 1 + 2
44 5 31 43 mp2an 2 gcd 1 = 2 gcd 1 + 2
45 40 42 44 3eqtri 1 = 2 gcd 1 + 2
46 1p2e3 1 + 2 = 3
47 46 oveq2i 2 gcd 1 + 2 = 2 gcd 3
48 45 47 eqtr2i 2 gcd 3 = 1
49 30 48 eqtri 3 gcd 2 = 1
50 49 oveq2i 3 2 3 gcd 2 = 3 2 1
51 3t2e6 3 2 = 6
52 51 oveq1i 3 2 1 = 6 1
53 6cn 6
54 53 div1i 6 1 = 6
55 52 54 eqtri 3 2 1 = 6
56 28 50 55 3eqtri 3 lcm 2 = 6