Metamath Proof Explorer


Theorem 3lt5

Description: 3 is less than 5. (Contributed by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion 3lt5 3 < 5

Proof

Step Hyp Ref Expression
1 3lt4 3 < 4
2 4lt5 4 < 5
3 3re 3
4 4re 4
5 5re 5
6 3 4 5 lttri 3 < 4 4 < 5 3 < 5
7 1 2 6 mp2an 3 < 5