Metamath Proof Explorer


Theorem 3lt6

Description: 3 is less than 6. (Contributed by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion 3lt6 3 < 6

Proof

Step Hyp Ref Expression
1 3lt4 3 < 4
2 4lt6 4 < 6
3 3re 3
4 4re 4
5 6re 6
6 3 4 5 lttri 3 < 4 4 < 6 3 < 6
7 1 2 6 mp2an 3 < 6