Metamath Proof Explorer


Theorem 3lt9

Description: 3 is less than 9. (Contributed by Mario Carneiro, 9-Mar-2015)

Ref Expression
Assertion 3lt9 3 < 9

Proof

Step Hyp Ref Expression
1 3lt4 3 < 4
2 4lt9 4 < 9
3 3re 3
4 4re 4
5 9re 9
6 3 4 5 lttri 3 < 4 4 < 9 3 < 9
7 1 2 6 mp2an 3 < 9