Metamath Proof Explorer


Theorem 3noncolr1N

Description: Two ways to express 3 non-colinear atoms (rotated right 1 place). (Contributed by NM, 12-Jul-2012) (New usage is discouraged.)

Ref Expression
Hypotheses 3noncol.l ˙ = K
3noncol.j ˙ = join K
3noncol.a A = Atoms K
Assertion 3noncolr1N K HL P A Q A R A P Q ¬ R ˙ P ˙ Q R P ¬ Q ˙ R ˙ P

Proof

Step Hyp Ref Expression
1 3noncol.l ˙ = K
2 3noncol.j ˙ = join K
3 3noncol.a A = Atoms K
4 simp1 K HL P A Q A R A P Q ¬ R ˙ P ˙ Q K HL
5 simp22 K HL P A Q A R A P Q ¬ R ˙ P ˙ Q Q A
6 simp23 K HL P A Q A R A P Q ¬ R ˙ P ˙ Q R A
7 simp21 K HL P A Q A R A P Q ¬ R ˙ P ˙ Q P A
8 1 2 3 3noncolr2 K HL P A Q A R A P Q ¬ R ˙ P ˙ Q Q R ¬ P ˙ Q ˙ R
9 1 2 3 3noncolr2 K HL Q A R A P A Q R ¬ P ˙ Q ˙ R R P ¬ Q ˙ R ˙ P
10 4 5 6 7 8 9 syl131anc K HL P A Q A R A P Q ¬ R ˙ P ˙ Q R P ¬ Q ˙ R ˙ P