Metamath Proof Explorer


Theorem 3noncolr2

Description: Two ways to express 3 non-colinear atoms (rotated right 2 places). (Contributed by NM, 12-Jul-2012)

Ref Expression
Hypotheses 3noncol.l ˙ = K
3noncol.j ˙ = join K
3noncol.a A = Atoms K
Assertion 3noncolr2 K HL P A Q A R A P Q ¬ R ˙ P ˙ Q Q R ¬ P ˙ Q ˙ R

Proof

Step Hyp Ref Expression
1 3noncol.l ˙ = K
2 3noncol.j ˙ = join K
3 3noncol.a A = Atoms K
4 hllat K HL K Lat
5 4 3ad2ant1 K HL P A Q A R A P Q ¬ R ˙ P ˙ Q K Lat
6 simp23 K HL P A Q A R A P Q ¬ R ˙ P ˙ Q R A
7 eqid Base K = Base K
8 7 3 atbase R A R Base K
9 6 8 syl K HL P A Q A R A P Q ¬ R ˙ P ˙ Q R Base K
10 simp21 K HL P A Q A R A P Q ¬ R ˙ P ˙ Q P A
11 7 3 atbase P A P Base K
12 10 11 syl K HL P A Q A R A P Q ¬ R ˙ P ˙ Q P Base K
13 simp22 K HL P A Q A R A P Q ¬ R ˙ P ˙ Q Q A
14 7 3 atbase Q A Q Base K
15 13 14 syl K HL P A Q A R A P Q ¬ R ˙ P ˙ Q Q Base K
16 simp3r K HL P A Q A R A P Q ¬ R ˙ P ˙ Q ¬ R ˙ P ˙ Q
17 7 1 2 latnlej1r K Lat R Base K P Base K Q Base K ¬ R ˙ P ˙ Q R Q
18 5 9 12 15 16 17 syl131anc K HL P A Q A R A P Q ¬ R ˙ P ˙ Q R Q
19 18 necomd K HL P A Q A R A P Q ¬ R ˙ P ˙ Q Q R
20 simp1 K HL P A Q A R A P Q ¬ R ˙ P ˙ Q K HL
21 simp3l K HL P A Q A R A P Q ¬ R ˙ P ˙ Q P Q
22 1 2 3 hlatexch1 K HL P A R A Q A P Q P ˙ Q ˙ R R ˙ Q ˙ P
23 20 10 6 13 21 22 syl131anc K HL P A Q A R A P Q ¬ R ˙ P ˙ Q P ˙ Q ˙ R R ˙ Q ˙ P
24 2 3 hlatjcom K HL P A Q A P ˙ Q = Q ˙ P
25 20 10 13 24 syl3anc K HL P A Q A R A P Q ¬ R ˙ P ˙ Q P ˙ Q = Q ˙ P
26 25 breq2d K HL P A Q A R A P Q ¬ R ˙ P ˙ Q R ˙ P ˙ Q R ˙ Q ˙ P
27 23 26 sylibrd K HL P A Q A R A P Q ¬ R ˙ P ˙ Q P ˙ Q ˙ R R ˙ P ˙ Q
28 16 27 mtod K HL P A Q A R A P Q ¬ R ˙ P ˙ Q ¬ P ˙ Q ˙ R
29 19 28 jca K HL P A Q A R A P Q ¬ R ˙ P ˙ Q Q R ¬ P ˙ Q ˙ R