Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Natural number arithmetic
3onn
Next ⟩
4onn
Metamath Proof Explorer
Ascii
Unicode
Theorem
3onn
Description:
The ordinal 3 is a natural number.
(Contributed by
Mario Carneiro
, 5-Jan-2016)
Ref
Expression
Assertion
3onn
⊢
3
𝑜
∈
ω
Proof
Step
Hyp
Ref
Expression
1
df-3o
⊢
3
𝑜
=
suc
⁡
2
𝑜
2
2onn
⊢
2
𝑜
∈
ω
3
peano2
⊢
2
𝑜
∈
ω
→
suc
⁡
2
𝑜
∈
ω
4
2
3
ax-mp
⊢
suc
⁡
2
𝑜
∈
ω
5
1
4
eqeltri
⊢
3
𝑜
∈
ω