Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
3optocl
Next ⟩
opbrop
Metamath Proof Explorer
Ascii
Unicode
Theorem
3optocl
Description:
Implicit substitution of classes for ordered pairs.
(Contributed by
NM
, 12-Mar-1995)
Ref
Expression
Hypotheses
3optocl.1
⊢
R
=
D
×
F
3optocl.2
⊢
x
y
=
A
→
φ
↔
ψ
3optocl.3
⊢
z
w
=
B
→
ψ
↔
χ
3optocl.4
⊢
v
u
=
C
→
χ
↔
θ
3optocl.5
⊢
x
∈
D
∧
y
∈
F
∧
z
∈
D
∧
w
∈
F
∧
v
∈
D
∧
u
∈
F
→
φ
Assertion
3optocl
⊢
A
∈
R
∧
B
∈
R
∧
C
∈
R
→
θ
Proof
Step
Hyp
Ref
Expression
1
3optocl.1
⊢
R
=
D
×
F
2
3optocl.2
⊢
x
y
=
A
→
φ
↔
ψ
3
3optocl.3
⊢
z
w
=
B
→
ψ
↔
χ
4
3optocl.4
⊢
v
u
=
C
→
χ
↔
θ
5
3optocl.5
⊢
x
∈
D
∧
y
∈
F
∧
z
∈
D
∧
w
∈
F
∧
v
∈
D
∧
u
∈
F
→
φ
6
4
imbi2d
⊢
v
u
=
C
→
A
∈
R
∧
B
∈
R
→
χ
↔
A
∈
R
∧
B
∈
R
→
θ
7
2
imbi2d
⊢
x
y
=
A
→
v
∈
D
∧
u
∈
F
→
φ
↔
v
∈
D
∧
u
∈
F
→
ψ
8
3
imbi2d
⊢
z
w
=
B
→
v
∈
D
∧
u
∈
F
→
ψ
↔
v
∈
D
∧
u
∈
F
→
χ
9
5
3expia
⊢
x
∈
D
∧
y
∈
F
∧
z
∈
D
∧
w
∈
F
→
v
∈
D
∧
u
∈
F
→
φ
10
1
7
8
9
2optocl
⊢
A
∈
R
∧
B
∈
R
→
v
∈
D
∧
u
∈
F
→
χ
11
10
com12
⊢
v
∈
D
∧
u
∈
F
→
A
∈
R
∧
B
∈
R
→
χ
12
1
6
11
optocl
⊢
C
∈
R
→
A
∈
R
∧
B
∈
R
→
θ
13
12
impcom
⊢
A
∈
R
∧
B
∈
R
∧
C
∈
R
→
θ
14
13
3impa
⊢
A
∈
R
∧
B
∈
R
∧
C
∈
R
→
θ