Metamath Proof Explorer


Theorem 3optocl

Description: Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995)

Ref Expression
Hypotheses 3optocl.1 R = D × F
3optocl.2 x y = A φ ψ
3optocl.3 z w = B ψ χ
3optocl.4 v u = C χ θ
3optocl.5 x D y F z D w F v D u F φ
Assertion 3optocl A R B R C R θ

Proof

Step Hyp Ref Expression
1 3optocl.1 R = D × F
2 3optocl.2 x y = A φ ψ
3 3optocl.3 z w = B ψ χ
4 3optocl.4 v u = C χ θ
5 3optocl.5 x D y F z D w F v D u F φ
6 4 imbi2d v u = C A R B R χ A R B R θ
7 2 imbi2d x y = A v D u F φ v D u F ψ
8 3 imbi2d z w = B v D u F ψ v D u F χ
9 5 3expia x D y F z D w F v D u F φ
10 1 7 8 9 2optocl A R B R v D u F χ
11 10 com12 v D u F A R B R χ
12 1 6 11 optocl C R A R B R θ
13 12 impcom A R B R C R θ
14 13 3impa A R B R C R θ