Metamath Proof Explorer


Theorem 3oran

Description: Triple disjunction in terms of triple conjunction. (Contributed by NM, 8-Oct-2012)

Ref Expression
Assertion 3oran φ ψ χ ¬ ¬ φ ¬ ψ ¬ χ

Proof

Step Hyp Ref Expression
1 3ioran ¬ φ ψ χ ¬ φ ¬ ψ ¬ χ
2 1 con1bii ¬ ¬ φ ¬ ψ ¬ χ φ ψ χ
3 2 bicomi φ ψ χ ¬ ¬ φ ¬ ψ ¬ χ