Metamath Proof Explorer


Theorem 3ornot23

Description: If the second and third disjuncts of a true triple disjunction are false, then the first disjunct is true. Automatically derived from 3ornot23VD . (Contributed by Alan Sare, 31-Dec-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion 3ornot23 ¬ φ ¬ ψ χ φ ψ χ

Proof

Step Hyp Ref Expression
1 idd ¬ φ χ χ
2 pm2.21 ¬ φ φ χ
3 pm2.21 ¬ ψ ψ χ
4 1 2 3 3jaao ¬ φ ¬ φ ¬ ψ χ φ ψ χ
5 4 3anidm12 ¬ φ ¬ ψ χ φ ψ χ