Metamath Proof Explorer


Theorem 3polN

Description: Triple polarity cancels to a single polarity. (Contributed by NM, 6-Mar-2012) (New usage is discouraged.)

Ref Expression
Hypotheses 2polss.a A = Atoms K
2polss.p ˙ = 𝑃 K
Assertion 3polN K HL S A ˙ ˙ ˙ S = ˙ S

Proof

Step Hyp Ref Expression
1 2polss.a A = Atoms K
2 2polss.p ˙ = 𝑃 K
3 hlclat K HL K CLat
4 eqid Base K = Base K
5 4 1 atssbase A Base K
6 sstr S A A Base K S Base K
7 5 6 mpan2 S A S Base K
8 eqid lub K = lub K
9 4 8 clatlubcl K CLat S Base K lub K S Base K
10 3 7 9 syl2an K HL S A lub K S Base K
11 eqid oc K = oc K
12 eqid pmap K = pmap K
13 4 11 12 2 polpmapN K HL lub K S Base K ˙ pmap K lub K S = pmap K oc K lub K S
14 10 13 syldan K HL S A ˙ pmap K lub K S = pmap K oc K lub K S
15 8 1 12 2 2polvalN K HL S A ˙ ˙ S = pmap K lub K S
16 15 fveq2d K HL S A ˙ ˙ ˙ S = ˙ pmap K lub K S
17 8 11 1 12 2 polval2N K HL S A ˙ S = pmap K oc K lub K S
18 14 16 17 3eqtr4d K HL S A ˙ ˙ ˙ S = ˙ S