Database
ELEMENTARY NUMBER THEORY
Elementary prime number theory
Elementary properties
3prm
Next ⟩
4nprm
Metamath Proof Explorer
Ascii
Unicode
Theorem
3prm
Description:
3 is a prime number.
(Contributed by
Paul Chapman
, 22-Jun-2011)
Ref
Expression
Assertion
3prm
⊢
3
∈
ℙ
Proof
Step
Hyp
Ref
Expression
1
3z
⊢
3
∈
ℤ
2
1lt3
⊢
1
<
3
3
eluz2b1
⊢
3
∈
ℤ
≥
2
↔
3
∈
ℤ
∧
1
<
3
4
1
2
3
mpbir2an
⊢
3
∈
ℤ
≥
2
5
elfz1eq
⊢
z
∈
2
…
2
→
z
=
2
6
n2dvds3
⊢
¬
2
∥
3
7
breq1
⊢
z
=
2
→
z
∥
3
↔
2
∥
3
8
6
7
mtbiri
⊢
z
=
2
→
¬
z
∥
3
9
5
8
syl
⊢
z
∈
2
…
2
→
¬
z
∥
3
10
3m1e2
⊢
3
−
1
=
2
11
10
oveq2i
⊢
2
…
3
−
1
=
2
…
2
12
9
11
eleq2s
⊢
z
∈
2
…
3
−
1
→
¬
z
∥
3
13
12
rgen
⊢
∀
z
∈
2
…
3
−
1
¬
z
∥
3
14
isprm3
⊢
3
∈
ℙ
↔
3
∈
ℤ
≥
2
∧
∀
z
∈
2
…
3
−
1
¬
z
∥
3
15
4
13
14
mpbir2an
⊢
3
∈
ℙ