Metamath Proof Explorer


Theorem 3prm

Description: 3 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Assertion 3prm 3

Proof

Step Hyp Ref Expression
1 3z 3
2 1lt3 1 < 3
3 eluz2b1 3 2 3 1 < 3
4 1 2 3 mpbir2an 3 2
5 elfz1eq z 2 2 z = 2
6 n2dvds3 ¬ 2 3
7 breq1 z = 2 z 3 2 3
8 6 7 mtbiri z = 2 ¬ z 3
9 5 8 syl z 2 2 ¬ z 3
10 3m1e2 3 1 = 2
11 10 oveq2i 2 3 1 = 2 2
12 9 11 eleq2s z 2 3 1 ¬ z 3
13 12 rgen z 2 3 1 ¬ z 3
14 isprm3 3 3 2 z 2 3 1 ¬ z 3
15 4 13 14 mpbir2an 3