Metamath Proof Explorer


Theorem 3ralbidv

Description: Formula-building rule for restricted universal quantifiers (deduction form.) (Contributed by Scott Fenton, 20-Feb-2025)

Ref Expression
Hypothesis 3ralbidv.1 φ ψ χ
Assertion 3ralbidv φ x A y B z C ψ x A y B z C χ

Proof

Step Hyp Ref Expression
1 3ralbidv.1 φ ψ χ
2 1 ralbidv φ z C ψ z C χ
3 2 2ralbidv φ x A y B z C ψ x A y B z C χ