Metamath Proof Explorer


Theorem 3spthd

Description: A simple path of length 3 from one vertex to another, different vertex via a third vertex. (Contributed by AV, 10-Feb-2021) (Revised by AV, 24-Mar-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Hypotheses 3wlkd.p P = ⟨“ ABCD ”⟩
3wlkd.f F = ⟨“ JKL ”⟩
3wlkd.s φ A V B V C V D V
3wlkd.n φ A B A C B C B D C D
3wlkd.e φ A B I J B C I K C D I L
3wlkd.v V = Vtx G
3wlkd.i I = iEdg G
3trld.n φ J K J L K L
3spthd.n φ A D
Assertion 3spthd φ F SPaths G P

Proof

Step Hyp Ref Expression
1 3wlkd.p P = ⟨“ ABCD ”⟩
2 3wlkd.f F = ⟨“ JKL ”⟩
3 3wlkd.s φ A V B V C V D V
4 3wlkd.n φ A B A C B C B D C D
5 3wlkd.e φ A B I J B C I K C D I L
6 3wlkd.v V = Vtx G
7 3wlkd.i I = iEdg G
8 3trld.n φ J K J L K L
9 3spthd.n φ A D
10 1 2 3 4 5 6 7 8 3trld φ F Trails G P
11 simpr φ F Trails G P F Trails G P
12 df-3an A B A C A D A B A C A D
13 12 simplbi2 A B A C A D A B A C A D
14 13 3ad2ant1 A B A C B C B D C D A D A B A C A D
15 9 14 mpan9 φ A B A C B C B D C D A B A C A D
16 simpr2 φ A B A C B C B D C D B C B D
17 simpr3 φ A B A C B C B D C D C D
18 15 16 17 3jca φ A B A C B C B D C D A B A C A D B C B D C D
19 4 18 mpdan φ A B A C A D B C B D C D
20 funcnvs4 A V B V C V D V A B A C A D B C B D C D Fun ⟨“ ABCD ”⟩ -1
21 3 19 20 syl2anc φ Fun ⟨“ ABCD ”⟩ -1
22 21 adantr φ F Trails G P Fun ⟨“ ABCD ”⟩ -1
23 1 a1i φ F Trails G P P = ⟨“ ABCD ”⟩
24 23 cnveqd φ F Trails G P P -1 = ⟨“ ABCD ”⟩ -1
25 24 funeqd φ F Trails G P Fun P -1 Fun ⟨“ ABCD ”⟩ -1
26 22 25 mpbird φ F Trails G P Fun P -1
27 isspth F SPaths G P F Trails G P Fun P -1
28 11 26 27 sylanbrc φ F Trails G P F SPaths G P
29 10 28 mpdan φ F SPaths G P