Metamath Proof Explorer
Description: Substitution of equality into both sides of a subclass relationship.
(Contributed by NM, 1-Oct-2000)
|
|
Ref |
Expression |
|
Hypotheses |
3sstr3g.1 |
|
|
|
3sstr3g.2 |
|
|
|
3sstr3g.3 |
|
|
Assertion |
3sstr3g |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
3sstr3g.1 |
|
2 |
|
3sstr3g.2 |
|
3 |
|
3sstr3g.3 |
|
4 |
2 3
|
sseq12i |
|
5 |
1 4
|
sylib |
|