Metamath Proof Explorer


Theorem 3vfriswmgrlem

Description: Lemma for 3vfriswmgr . (Contributed by Alexander van der Vekens, 6-Oct-2017) (Revised by AV, 31-Mar-2021)

Ref Expression
Hypotheses 3vfriswmgr.v V = Vtx G
3vfriswmgr.e E = Edg G
Assertion 3vfriswmgrlem A X B Y A B V = A B C G USGraph A B E ∃! w A B A w E

Proof

Step Hyp Ref Expression
1 3vfriswmgr.v V = Vtx G
2 3vfriswmgr.e E = Edg G
3 animorr A X B Y A B V = A B C G USGraph A B E A A E A B E
4 preq2 w = A A w = A A
5 4 eleq1d w = A A w E A A E
6 preq2 w = B A w = A B
7 6 eleq1d w = B A w E A B E
8 5 7 rexprg A X B Y w A B A w E A A E A B E
9 8 3adant3 A X B Y A B w A B A w E A A E A B E
10 9 ad2antrr A X B Y A B V = A B C G USGraph A B E w A B A w E A A E A B E
11 3 10 mpbird A X B Y A B V = A B C G USGraph A B E w A B A w E
12 df-rex w A B A w E w w A B A w E
13 11 12 sylib A X B Y A B V = A B C G USGraph A B E w w A B A w E
14 vex w V
15 14 elpr w A B w = A w = B
16 vex y V
17 16 elpr y A B y = A y = B
18 eqidd A X B Y A B V = A B C G USGraph A B E A = A
19 18 a1i A A E A X B Y A B V = A B C G USGraph A B E A = A
20 19 a1i13 y = A A A E A A E A X B Y A B V = A B C G USGraph A B E A = A
21 preq2 y = A A y = A A
22 21 eleq1d y = A A y E A A E
23 eqeq2 y = A A = y A = A
24 23 imbi2d y = A A X B Y A B V = A B C G USGraph A B E A = y A X B Y A B V = A B C G USGraph A B E A = A
25 24 imbi2d y = A A A E A X B Y A B V = A B C G USGraph A B E A = y A A E A X B Y A B V = A B C G USGraph A B E A = A
26 20 22 25 3imtr4d y = A A y E A A E A X B Y A B V = A B C G USGraph A B E A = y
27 2 usgredgne G USGraph A A E A A
28 27 adantll V = A B C G USGraph A A E A A
29 df-ne A A ¬ A = A
30 eqid A = A
31 30 pm2.24i ¬ A = A A = B
32 29 31 sylbi A A A = B
33 28 32 syl V = A B C G USGraph A A E A = B
34 33 ex V = A B C G USGraph A A E A = B
35 34 ad2antlr A X B Y A B V = A B C G USGraph A B E A A E A = B
36 35 com12 A A E A X B Y A B V = A B C G USGraph A B E A = B
37 36 2a1i y = B A B E A A E A X B Y A B V = A B C G USGraph A B E A = B
38 preq2 y = B A y = A B
39 38 eleq1d y = B A y E A B E
40 eqeq2 y = B A = y A = B
41 40 imbi2d y = B A X B Y A B V = A B C G USGraph A B E A = y A X B Y A B V = A B C G USGraph A B E A = B
42 41 imbi2d y = B A A E A X B Y A B V = A B C G USGraph A B E A = y A A E A X B Y A B V = A B C G USGraph A B E A = B
43 37 39 42 3imtr4d y = B A y E A A E A X B Y A B V = A B C G USGraph A B E A = y
44 26 43 jaoi y = A y = B A y E A A E A X B Y A B V = A B C G USGraph A B E A = y
45 eqeq1 w = A w = y A = y
46 45 imbi2d w = A A X B Y A B V = A B C G USGraph A B E w = y A X B Y A B V = A B C G USGraph A B E A = y
47 5 46 imbi12d w = A A w E A X B Y A B V = A B C G USGraph A B E w = y A A E A X B Y A B V = A B C G USGraph A B E A = y
48 47 imbi2d w = A A y E A w E A X B Y A B V = A B C G USGraph A B E w = y A y E A A E A X B Y A B V = A B C G USGraph A B E A = y
49 44 48 syl5ibr w = A y = A y = B A y E A w E A X B Y A B V = A B C G USGraph A B E w = y
50 30 pm2.24i ¬ A = A B = A
51 29 50 sylbi A A B = A
52 28 51 syl V = A B C G USGraph A A E B = A
53 52 ex V = A B C G USGraph A A E B = A
54 53 ad2antlr A X B Y A B V = A B C G USGraph A B E A A E B = A
55 54 com12 A A E A X B Y A B V = A B C G USGraph A B E B = A
56 55 a1i13 y = A A A E A B E A X B Y A B V = A B C G USGraph A B E B = A
57 eqeq2 y = A B = y B = A
58 57 imbi2d y = A A X B Y A B V = A B C G USGraph A B E B = y A X B Y A B V = A B C G USGraph A B E B = A
59 58 imbi2d y = A A B E A X B Y A B V = A B C G USGraph A B E B = y A B E A X B Y A B V = A B C G USGraph A B E B = A
60 56 22 59 3imtr4d y = A A y E A B E A X B Y A B V = A B C G USGraph A B E B = y
61 eqidd A X B Y A B V = A B C G USGraph A B E B = B
62 61 a1i A B E A X B Y A B V = A B C G USGraph A B E B = B
63 62 a1i13 y = B A B E A B E A X B Y A B V = A B C G USGraph A B E B = B
64 eqeq2 y = B B = y B = B
65 64 imbi2d y = B A X B Y A B V = A B C G USGraph A B E B = y A X B Y A B V = A B C G USGraph A B E B = B
66 65 imbi2d y = B A B E A X B Y A B V = A B C G USGraph A B E B = y A B E A X B Y A B V = A B C G USGraph A B E B = B
67 63 39 66 3imtr4d y = B A y E A B E A X B Y A B V = A B C G USGraph A B E B = y
68 60 67 jaoi y = A y = B A y E A B E A X B Y A B V = A B C G USGraph A B E B = y
69 eqeq1 w = B w = y B = y
70 69 imbi2d w = B A X B Y A B V = A B C G USGraph A B E w = y A X B Y A B V = A B C G USGraph A B E B = y
71 7 70 imbi12d w = B A w E A X B Y A B V = A B C G USGraph A B E w = y A B E A X B Y A B V = A B C G USGraph A B E B = y
72 71 imbi2d w = B A y E A w E A X B Y A B V = A B C G USGraph A B E w = y A y E A B E A X B Y A B V = A B C G USGraph A B E B = y
73 68 72 syl5ibr w = B y = A y = B A y E A w E A X B Y A B V = A B C G USGraph A B E w = y
74 49 73 jaoi w = A w = B y = A y = B A y E A w E A X B Y A B V = A B C G USGraph A B E w = y
75 74 com3l y = A y = B A y E w = A w = B A w E A X B Y A B V = A B C G USGraph A B E w = y
76 17 75 sylbi y A B A y E w = A w = B A w E A X B Y A B V = A B C G USGraph A B E w = y
77 76 imp y A B A y E w = A w = B A w E A X B Y A B V = A B C G USGraph A B E w = y
78 77 com3l w = A w = B A w E y A B A y E A X B Y A B V = A B C G USGraph A B E w = y
79 15 78 sylbi w A B A w E y A B A y E A X B Y A B V = A B C G USGraph A B E w = y
80 79 imp31 w A B A w E y A B A y E A X B Y A B V = A B C G USGraph A B E w = y
81 80 com12 A X B Y A B V = A B C G USGraph A B E w A B A w E y A B A y E w = y
82 81 alrimivv A X B Y A B V = A B C G USGraph A B E w y w A B A w E y A B A y E w = y
83 eleq1w w = y w A B y A B
84 preq2 w = y A w = A y
85 84 eleq1d w = y A w E A y E
86 83 85 anbi12d w = y w A B A w E y A B A y E
87 86 eu4 ∃! w w A B A w E w w A B A w E w y w A B A w E y A B A y E w = y
88 13 82 87 sylanbrc A X B Y A B V = A B C G USGraph A B E ∃! w w A B A w E
89 df-reu ∃! w A B A w E ∃! w w A B A w E
90 88 89 sylibr A X B Y A B V = A B C G USGraph A B E ∃! w A B A w E
91 90 ex A X B Y A B V = A B C G USGraph A B E ∃! w A B A w E