Metamath Proof Explorer


Theorem 3wlkd

Description: Construction of a walk from two given edges in a graph. (Contributed by AV, 7-Feb-2021) (Revised by AV, 24-Mar-2021)

Ref Expression
Hypotheses 3wlkd.p P = ⟨“ ABCD ”⟩
3wlkd.f F = ⟨“ JKL ”⟩
3wlkd.s φ A V B V C V D V
3wlkd.n φ A B A C B C B D C D
3wlkd.e φ A B I J B C I K C D I L
3wlkd.v V = Vtx G
3wlkd.i I = iEdg G
Assertion 3wlkd φ F Walks G P

Proof

Step Hyp Ref Expression
1 3wlkd.p P = ⟨“ ABCD ”⟩
2 3wlkd.f F = ⟨“ JKL ”⟩
3 3wlkd.s φ A V B V C V D V
4 3wlkd.n φ A B A C B C B D C D
5 3wlkd.e φ A B I J B C I K C D I L
6 3wlkd.v V = Vtx G
7 3wlkd.i I = iEdg G
8 s4cli ⟨“ ABCD ”⟩ Word V
9 1 8 eqeltri P Word V
10 9 a1i φ P Word V
11 s3cli ⟨“ JKL ”⟩ Word V
12 2 11 eqeltri F Word V
13 12 a1i φ F Word V
14 1 2 3wlkdlem1 P = F + 1
15 14 a1i φ P = F + 1
16 1 2 3 4 5 3wlkdlem10 φ k 0 ..^ F P k P k + 1 I F k
17 1 2 3 4 3wlkdlem5 φ k 0 ..^ F P k P k + 1
18 6 1vgrex A V G V
19 18 ad2antrr A V B V C V D V G V
20 3 19 syl φ G V
21 1 2 3 3wlkdlem4 φ k 0 F P k V
22 10 13 15 16 17 20 6 7 21 wlkd φ F Walks G P