Metamath Proof Explorer


Theorem 3wlkdlem1

Description: Lemma 1 for 3wlkd . (Contributed by AV, 7-Feb-2021)

Ref Expression
Hypotheses 3wlkd.p P = ⟨“ ABCD ”⟩
3wlkd.f F = ⟨“ JKL ”⟩
Assertion 3wlkdlem1 P = F + 1

Proof

Step Hyp Ref Expression
1 3wlkd.p P = ⟨“ ABCD ”⟩
2 3wlkd.f F = ⟨“ JKL ”⟩
3 1 fveq2i P = ⟨“ ABCD ”⟩
4 s4len ⟨“ ABCD ”⟩ = 4
5 df-4 4 = 3 + 1
6 4 5 eqtri ⟨“ ABCD ”⟩ = 3 + 1
7 2 fveq2i F = ⟨“ JKL ”⟩
8 s3len ⟨“ JKL ”⟩ = 3
9 7 8 eqtr2i 3 = F
10 9 oveq1i 3 + 1 = F + 1
11 6 10 eqtri ⟨“ ABCD ”⟩ = F + 1
12 3 11 eqtri P = F + 1