Metamath Proof Explorer


Theorem 3wlkdlem3

Description: Lemma 3 for 3wlkd . (Contributed by Alexander van der Vekens, 10-Nov-2017) (Revised by AV, 7-Feb-2021)

Ref Expression
Hypotheses 3wlkd.p P = ⟨“ ABCD ”⟩
3wlkd.f F = ⟨“ JKL ”⟩
3wlkd.s φ A V B V C V D V
Assertion 3wlkdlem3 φ P 0 = A P 1 = B P 2 = C P 3 = D

Proof

Step Hyp Ref Expression
1 3wlkd.p P = ⟨“ ABCD ”⟩
2 3wlkd.f F = ⟨“ JKL ”⟩
3 3wlkd.s φ A V B V C V D V
4 1 fveq1i P 0 = ⟨“ ABCD ”⟩ 0
5 s4fv0 A V ⟨“ ABCD ”⟩ 0 = A
6 4 5 syl5eq A V P 0 = A
7 1 fveq1i P 1 = ⟨“ ABCD ”⟩ 1
8 s4fv1 B V ⟨“ ABCD ”⟩ 1 = B
9 7 8 syl5eq B V P 1 = B
10 6 9 anim12i A V B V P 0 = A P 1 = B
11 1 fveq1i P 2 = ⟨“ ABCD ”⟩ 2
12 s4fv2 C V ⟨“ ABCD ”⟩ 2 = C
13 11 12 syl5eq C V P 2 = C
14 1 fveq1i P 3 = ⟨“ ABCD ”⟩ 3
15 s4fv3 D V ⟨“ ABCD ”⟩ 3 = D
16 14 15 syl5eq D V P 3 = D
17 13 16 anim12i C V D V P 2 = C P 3 = D
18 10 17 anim12i A V B V C V D V P 0 = A P 1 = B P 2 = C P 3 = D
19 3 18 syl φ P 0 = A P 1 = B P 2 = C P 3 = D