Metamath Proof Explorer


Theorem 3wlkdlem4

Description: Lemma 4 for 3wlkd . (Contributed by Alexander van der Vekens, 11-Nov-2017) (Revised by AV, 7-Feb-2021)

Ref Expression
Hypotheses 3wlkd.p P = ⟨“ ABCD ”⟩
3wlkd.f F = ⟨“ JKL ”⟩
3wlkd.s φ A V B V C V D V
Assertion 3wlkdlem4 φ k 0 F P k V

Proof

Step Hyp Ref Expression
1 3wlkd.p P = ⟨“ ABCD ”⟩
2 3wlkd.f F = ⟨“ JKL ”⟩
3 3wlkd.s φ A V B V C V D V
4 1 2 3 3wlkdlem3 φ P 0 = A P 1 = B P 2 = C P 3 = D
5 simpl P 0 = A P 1 = B P 0 = A
6 5 eleq1d P 0 = A P 1 = B P 0 V A V
7 simpr P 0 = A P 1 = B P 1 = B
8 7 eleq1d P 0 = A P 1 = B P 1 V B V
9 6 8 anbi12d P 0 = A P 1 = B P 0 V P 1 V A V B V
10 9 biimparc A V B V P 0 = A P 1 = B P 0 V P 1 V
11 c0ex 0 V
12 1ex 1 V
13 11 12 pm3.2i 0 V 1 V
14 fveq2 k = 0 P k = P 0
15 14 eleq1d k = 0 P k V P 0 V
16 fveq2 k = 1 P k = P 1
17 16 eleq1d k = 1 P k V P 1 V
18 15 17 ralprg 0 V 1 V k 0 1 P k V P 0 V P 1 V
19 13 18 mp1i A V B V P 0 = A P 1 = B k 0 1 P k V P 0 V P 1 V
20 10 19 mpbird A V B V P 0 = A P 1 = B k 0 1 P k V
21 20 ex A V B V P 0 = A P 1 = B k 0 1 P k V
22 simpl P 2 = C P 3 = D P 2 = C
23 22 eleq1d P 2 = C P 3 = D P 2 V C V
24 simpr P 2 = C P 3 = D P 3 = D
25 24 eleq1d P 2 = C P 3 = D P 3 V D V
26 23 25 anbi12d P 2 = C P 3 = D P 2 V P 3 V C V D V
27 26 biimparc C V D V P 2 = C P 3 = D P 2 V P 3 V
28 2ex 2 V
29 3ex 3 V
30 28 29 pm3.2i 2 V 3 V
31 fveq2 k = 2 P k = P 2
32 31 eleq1d k = 2 P k V P 2 V
33 fveq2 k = 3 P k = P 3
34 33 eleq1d k = 3 P k V P 3 V
35 32 34 ralprg 2 V 3 V k 2 3 P k V P 2 V P 3 V
36 30 35 mp1i C V D V P 2 = C P 3 = D k 2 3 P k V P 2 V P 3 V
37 27 36 mpbird C V D V P 2 = C P 3 = D k 2 3 P k V
38 37 ex C V D V P 2 = C P 3 = D k 2 3 P k V
39 21 38 im2anan9 A V B V C V D V P 0 = A P 1 = B P 2 = C P 3 = D k 0 1 P k V k 2 3 P k V
40 3 4 39 sylc φ k 0 1 P k V k 2 3 P k V
41 2 fveq2i F = ⟨“ JKL ”⟩
42 s3len ⟨“ JKL ”⟩ = 3
43 41 42 eqtri F = 3
44 43 oveq2i 0 F = 0 3
45 fz0to3un2pr 0 3 = 0 1 2 3
46 44 45 eqtri 0 F = 0 1 2 3
47 46 raleqi k 0 F P k V k 0 1 2 3 P k V
48 ralunb k 0 1 2 3 P k V k 0 1 P k V k 2 3 P k V
49 47 48 bitri k 0 F P k V k 0 1 P k V k 2 3 P k V
50 40 49 sylibr φ k 0 F P k V