Metamath Proof Explorer


Theorem 3wlkdlem5

Description: Lemma 5 for 3wlkd . (Contributed by Alexander van der Vekens, 11-Nov-2017) (Revised by AV, 7-Feb-2021)

Ref Expression
Hypotheses 3wlkd.p P = ⟨“ ABCD ”⟩
3wlkd.f F = ⟨“ JKL ”⟩
3wlkd.s φ A V B V C V D V
3wlkd.n φ A B A C B C B D C D
Assertion 3wlkdlem5 φ k 0 ..^ F P k P k + 1

Proof

Step Hyp Ref Expression
1 3wlkd.p P = ⟨“ ABCD ”⟩
2 3wlkd.f F = ⟨“ JKL ”⟩
3 3wlkd.s φ A V B V C V D V
4 3wlkd.n φ A B A C B C B D C D
5 simpl A B A C A B
6 simpl B C B D B C
7 id C D C D
8 5 6 7 3anim123i A B A C B C B D C D A B B C C D
9 4 8 syl φ A B B C C D
10 1 2 3 3wlkdlem3 φ P 0 = A P 1 = B P 2 = C P 3 = D
11 simpl P 0 = A P 1 = B P 0 = A
12 simpr P 0 = A P 1 = B P 1 = B
13 11 12 neeq12d P 0 = A P 1 = B P 0 P 1 A B
14 13 adantr P 0 = A P 1 = B P 2 = C P 3 = D P 0 P 1 A B
15 12 adantr P 0 = A P 1 = B P 2 = C P 3 = D P 1 = B
16 simpl P 2 = C P 3 = D P 2 = C
17 16 adantl P 0 = A P 1 = B P 2 = C P 3 = D P 2 = C
18 15 17 neeq12d P 0 = A P 1 = B P 2 = C P 3 = D P 1 P 2 B C
19 simpr P 2 = C P 3 = D P 3 = D
20 16 19 neeq12d P 2 = C P 3 = D P 2 P 3 C D
21 20 adantl P 0 = A P 1 = B P 2 = C P 3 = D P 2 P 3 C D
22 14 18 21 3anbi123d P 0 = A P 1 = B P 2 = C P 3 = D P 0 P 1 P 1 P 2 P 2 P 3 A B B C C D
23 10 22 syl φ P 0 P 1 P 1 P 2 P 2 P 3 A B B C C D
24 9 23 mpbird φ P 0 P 1 P 1 P 2 P 2 P 3
25 1 2 3wlkdlem2 0 ..^ F = 0 1 2
26 25 raleqi k 0 ..^ F P k P k + 1 k 0 1 2 P k P k + 1
27 c0ex 0 V
28 1ex 1 V
29 2ex 2 V
30 fveq2 k = 0 P k = P 0
31 fv0p1e1 k = 0 P k + 1 = P 1
32 30 31 neeq12d k = 0 P k P k + 1 P 0 P 1
33 fveq2 k = 1 P k = P 1
34 oveq1 k = 1 k + 1 = 1 + 1
35 1p1e2 1 + 1 = 2
36 34 35 eqtrdi k = 1 k + 1 = 2
37 36 fveq2d k = 1 P k + 1 = P 2
38 33 37 neeq12d k = 1 P k P k + 1 P 1 P 2
39 fveq2 k = 2 P k = P 2
40 oveq1 k = 2 k + 1 = 2 + 1
41 2p1e3 2 + 1 = 3
42 40 41 eqtrdi k = 2 k + 1 = 3
43 42 fveq2d k = 2 P k + 1 = P 3
44 39 43 neeq12d k = 2 P k P k + 1 P 2 P 3
45 27 28 29 32 38 44 raltp k 0 1 2 P k P k + 1 P 0 P 1 P 1 P 2 P 2 P 3
46 26 45 bitri k 0 ..^ F P k P k + 1 P 0 P 1 P 1 P 2 P 2 P 3
47 24 46 sylibr φ k 0 ..^ F P k P k + 1