Metamath Proof Explorer


Theorem 3wlkdlem6

Description: Lemma 6 for 3wlkd . (Contributed by AV, 7-Feb-2021)

Ref Expression
Hypotheses 3wlkd.p P = ⟨“ ABCD ”⟩
3wlkd.f F = ⟨“ JKL ”⟩
3wlkd.s φ A V B V C V D V
3wlkd.n φ A B A C B C B D C D
3wlkd.e φ A B I J B C I K C D I L
Assertion 3wlkdlem6 φ A I J B I K C I L

Proof

Step Hyp Ref Expression
1 3wlkd.p P = ⟨“ ABCD ”⟩
2 3wlkd.f F = ⟨“ JKL ”⟩
3 3wlkd.s φ A V B V C V D V
4 3wlkd.n φ A B A C B C B D C D
5 3wlkd.e φ A B I J B C I K C D I L
6 1 2 3 3wlkdlem3 φ P 0 = A P 1 = B P 2 = C P 3 = D
7 preq12 P 0 = A P 1 = B P 0 P 1 = A B
8 7 sseq1d P 0 = A P 1 = B P 0 P 1 I J A B I J
9 8 adantr P 0 = A P 1 = B P 2 = C P 3 = D P 0 P 1 I J A B I J
10 preq12 P 1 = B P 2 = C P 1 P 2 = B C
11 10 ad2ant2lr P 0 = A P 1 = B P 2 = C P 3 = D P 1 P 2 = B C
12 11 sseq1d P 0 = A P 1 = B P 2 = C P 3 = D P 1 P 2 I K B C I K
13 preq12 P 2 = C P 3 = D P 2 P 3 = C D
14 13 sseq1d P 2 = C P 3 = D P 2 P 3 I L C D I L
15 14 adantl P 0 = A P 1 = B P 2 = C P 3 = D P 2 P 3 I L C D I L
16 9 12 15 3anbi123d P 0 = A P 1 = B P 2 = C P 3 = D P 0 P 1 I J P 1 P 2 I K P 2 P 3 I L A B I J B C I K C D I L
17 5 16 syl5ibrcom φ P 0 = A P 1 = B P 2 = C P 3 = D P 0 P 1 I J P 1 P 2 I K P 2 P 3 I L
18 6 17 mpd φ P 0 P 1 I J P 1 P 2 I K P 2 P 3 I L
19 fvex P 0 V
20 fvex P 1 V
21 19 20 prss P 0 I J P 1 I J P 0 P 1 I J
22 simpl P 0 I J P 1 I J P 0 I J
23 21 22 sylbir P 0 P 1 I J P 0 I J
24 fvex P 2 V
25 20 24 prss P 1 I K P 2 I K P 1 P 2 I K
26 simpl P 1 I K P 2 I K P 1 I K
27 25 26 sylbir P 1 P 2 I K P 1 I K
28 fvex P 3 V
29 24 28 prss P 2 I L P 3 I L P 2 P 3 I L
30 simpl P 2 I L P 3 I L P 2 I L
31 29 30 sylbir P 2 P 3 I L P 2 I L
32 23 27 31 3anim123i P 0 P 1 I J P 1 P 2 I K P 2 P 3 I L P 0 I J P 1 I K P 2 I L
33 18 32 syl φ P 0 I J P 1 I K P 2 I L
34 eleq1 P 0 = A P 0 I J A I J
35 34 adantr P 0 = A P 1 = B P 0 I J A I J
36 35 adantr P 0 = A P 1 = B P 2 = C P 3 = D P 0 I J A I J
37 eleq1 P 1 = B P 1 I K B I K
38 37 adantl P 0 = A P 1 = B P 1 I K B I K
39 38 adantr P 0 = A P 1 = B P 2 = C P 3 = D P 1 I K B I K
40 eleq1 P 2 = C P 2 I L C I L
41 40 adantr P 2 = C P 3 = D P 2 I L C I L
42 41 adantl P 0 = A P 1 = B P 2 = C P 3 = D P 2 I L C I L
43 36 39 42 3anbi123d P 0 = A P 1 = B P 2 = C P 3 = D P 0 I J P 1 I K P 2 I L A I J B I K C I L
44 43 bicomd P 0 = A P 1 = B P 2 = C P 3 = D A I J B I K C I L P 0 I J P 1 I K P 2 I L
45 6 44 syl φ A I J B I K C I L P 0 I J P 1 I K P 2 I L
46 33 45 mpbird φ A I J B I K C I L