Metamath Proof Explorer


Theorem 3wlkdlem7

Description: Lemma 7 for 3wlkd . (Contributed by AV, 7-Feb-2021)

Ref Expression
Hypotheses 3wlkd.p P = ⟨“ ABCD ”⟩
3wlkd.f F = ⟨“ JKL ”⟩
3wlkd.s φ A V B V C V D V
3wlkd.n φ A B A C B C B D C D
3wlkd.e φ A B I J B C I K C D I L
Assertion 3wlkdlem7 φ J V K V L V

Proof

Step Hyp Ref Expression
1 3wlkd.p P = ⟨“ ABCD ”⟩
2 3wlkd.f F = ⟨“ JKL ”⟩
3 3wlkd.s φ A V B V C V D V
4 3wlkd.n φ A B A C B C B D C D
5 3wlkd.e φ A B I J B C I K C D I L
6 1 2 3 4 5 3wlkdlem6 φ A I J B I K C I L
7 elfvex A I J J V
8 elfvex B I K K V
9 elfvex C I L L V
10 7 8 9 3anim123i A I J B I K C I L J V K V L V
11 6 10 syl φ J V K V L V