Database
GRAPH THEORY
Walks, paths and cycles
Examples for walks, trails and paths
3wlkdlem7
Next ⟩
3wlkdlem8
Metamath Proof Explorer
Ascii
Unicode
Theorem
3wlkdlem7
Description:
Lemma 7 for
3wlkd
.
(Contributed by
AV
, 7-Feb-2021)
Ref
Expression
Hypotheses
3wlkd.p
⊢
P
=
〈“
A
B
C
D
”〉
3wlkd.f
⊢
F
=
〈“
J
K
L
”〉
3wlkd.s
⊢
φ
→
A
∈
V
∧
B
∈
V
∧
C
∈
V
∧
D
∈
V
3wlkd.n
⊢
φ
→
A
≠
B
∧
A
≠
C
∧
B
≠
C
∧
B
≠
D
∧
C
≠
D
3wlkd.e
⊢
φ
→
A
B
⊆
I
⁡
J
∧
B
C
⊆
I
⁡
K
∧
C
D
⊆
I
⁡
L
Assertion
3wlkdlem7
⊢
φ
→
J
∈
V
∧
K
∈
V
∧
L
∈
V
Proof
Step
Hyp
Ref
Expression
1
3wlkd.p
⊢
P
=
〈“
A
B
C
D
”〉
2
3wlkd.f
⊢
F
=
〈“
J
K
L
”〉
3
3wlkd.s
⊢
φ
→
A
∈
V
∧
B
∈
V
∧
C
∈
V
∧
D
∈
V
4
3wlkd.n
⊢
φ
→
A
≠
B
∧
A
≠
C
∧
B
≠
C
∧
B
≠
D
∧
C
≠
D
5
3wlkd.e
⊢
φ
→
A
B
⊆
I
⁡
J
∧
B
C
⊆
I
⁡
K
∧
C
D
⊆
I
⁡
L
6
1
2
3
4
5
3wlkdlem6
⊢
φ
→
A
∈
I
⁡
J
∧
B
∈
I
⁡
K
∧
C
∈
I
⁡
L
7
elfvex
⊢
A
∈
I
⁡
J
→
J
∈
V
8
elfvex
⊢
B
∈
I
⁡
K
→
K
∈
V
9
elfvex
⊢
C
∈
I
⁡
L
→
L
∈
V
10
7
8
9
3anim123i
⊢
A
∈
I
⁡
J
∧
B
∈
I
⁡
K
∧
C
∈
I
⁡
L
→
J
∈
V
∧
K
∈
V
∧
L
∈
V
11
6
10
syl
⊢
φ
→
J
∈
V
∧
K
∈
V
∧
L
∈
V