Database
GRAPH THEORY
Walks, paths and cycles
Examples for walks, trails and paths
3wlkdlem9
Next ⟩
3wlkdlem10
Metamath Proof Explorer
Ascii
Unicode
Theorem
3wlkdlem9
Description:
Lemma 9 for
3wlkd
.
(Contributed by
AV
, 7-Feb-2021)
Ref
Expression
Hypotheses
3wlkd.p
⊢
P
=
〈“
A
B
C
D
”〉
3wlkd.f
⊢
F
=
〈“
J
K
L
”〉
3wlkd.s
⊢
φ
→
A
∈
V
∧
B
∈
V
∧
C
∈
V
∧
D
∈
V
3wlkd.n
⊢
φ
→
A
≠
B
∧
A
≠
C
∧
B
≠
C
∧
B
≠
D
∧
C
≠
D
3wlkd.e
⊢
φ
→
A
B
⊆
I
⁡
J
∧
B
C
⊆
I
⁡
K
∧
C
D
⊆
I
⁡
L
Assertion
3wlkdlem9
⊢
φ
→
A
B
⊆
I
⁡
F
⁡
0
∧
B
C
⊆
I
⁡
F
⁡
1
∧
C
D
⊆
I
⁡
F
⁡
2
Proof
Step
Hyp
Ref
Expression
1
3wlkd.p
⊢
P
=
〈“
A
B
C
D
”〉
2
3wlkd.f
⊢
F
=
〈“
J
K
L
”〉
3
3wlkd.s
⊢
φ
→
A
∈
V
∧
B
∈
V
∧
C
∈
V
∧
D
∈
V
4
3wlkd.n
⊢
φ
→
A
≠
B
∧
A
≠
C
∧
B
≠
C
∧
B
≠
D
∧
C
≠
D
5
3wlkd.e
⊢
φ
→
A
B
⊆
I
⁡
J
∧
B
C
⊆
I
⁡
K
∧
C
D
⊆
I
⁡
L
6
1
2
3
4
5
3wlkdlem8
⊢
φ
→
F
⁡
0
=
J
∧
F
⁡
1
=
K
∧
F
⁡
2
=
L
7
fveq2
⊢
F
⁡
0
=
J
→
I
⁡
F
⁡
0
=
I
⁡
J
8
7
sseq2d
⊢
F
⁡
0
=
J
→
A
B
⊆
I
⁡
F
⁡
0
↔
A
B
⊆
I
⁡
J
9
8
3ad2ant1
⊢
F
⁡
0
=
J
∧
F
⁡
1
=
K
∧
F
⁡
2
=
L
→
A
B
⊆
I
⁡
F
⁡
0
↔
A
B
⊆
I
⁡
J
10
fveq2
⊢
F
⁡
1
=
K
→
I
⁡
F
⁡
1
=
I
⁡
K
11
10
sseq2d
⊢
F
⁡
1
=
K
→
B
C
⊆
I
⁡
F
⁡
1
↔
B
C
⊆
I
⁡
K
12
11
3ad2ant2
⊢
F
⁡
0
=
J
∧
F
⁡
1
=
K
∧
F
⁡
2
=
L
→
B
C
⊆
I
⁡
F
⁡
1
↔
B
C
⊆
I
⁡
K
13
fveq2
⊢
F
⁡
2
=
L
→
I
⁡
F
⁡
2
=
I
⁡
L
14
13
sseq2d
⊢
F
⁡
2
=
L
→
C
D
⊆
I
⁡
F
⁡
2
↔
C
D
⊆
I
⁡
L
15
14
3ad2ant3
⊢
F
⁡
0
=
J
∧
F
⁡
1
=
K
∧
F
⁡
2
=
L
→
C
D
⊆
I
⁡
F
⁡
2
↔
C
D
⊆
I
⁡
L
16
9
12
15
3anbi123d
⊢
F
⁡
0
=
J
∧
F
⁡
1
=
K
∧
F
⁡
2
=
L
→
A
B
⊆
I
⁡
F
⁡
0
∧
B
C
⊆
I
⁡
F
⁡
1
∧
C
D
⊆
I
⁡
F
⁡
2
↔
A
B
⊆
I
⁡
J
∧
B
C
⊆
I
⁡
K
∧
C
D
⊆
I
⁡
L
17
6
16
syl
⊢
φ
→
A
B
⊆
I
⁡
F
⁡
0
∧
B
C
⊆
I
⁡
F
⁡
1
∧
C
D
⊆
I
⁡
F
⁡
2
↔
A
B
⊆
I
⁡
J
∧
B
C
⊆
I
⁡
K
∧
C
D
⊆
I
⁡
L
18
5
17
mpbird
⊢
φ
→
A
B
⊆
I
⁡
F
⁡
0
∧
B
C
⊆
I
⁡
F
⁡
1
∧
C
D
⊆
I
⁡
F
⁡
2