Metamath Proof Explorer


Theorem 3wlkdlem9

Description: Lemma 9 for 3wlkd . (Contributed by AV, 7-Feb-2021)

Ref Expression
Hypotheses 3wlkd.p P = ⟨“ ABCD ”⟩
3wlkd.f F = ⟨“ JKL ”⟩
3wlkd.s φ A V B V C V D V
3wlkd.n φ A B A C B C B D C D
3wlkd.e φ A B I J B C I K C D I L
Assertion 3wlkdlem9 φ A B I F 0 B C I F 1 C D I F 2

Proof

Step Hyp Ref Expression
1 3wlkd.p P = ⟨“ ABCD ”⟩
2 3wlkd.f F = ⟨“ JKL ”⟩
3 3wlkd.s φ A V B V C V D V
4 3wlkd.n φ A B A C B C B D C D
5 3wlkd.e φ A B I J B C I K C D I L
6 1 2 3 4 5 3wlkdlem8 φ F 0 = J F 1 = K F 2 = L
7 fveq2 F 0 = J I F 0 = I J
8 7 sseq2d F 0 = J A B I F 0 A B I J
9 8 3ad2ant1 F 0 = J F 1 = K F 2 = L A B I F 0 A B I J
10 fveq2 F 1 = K I F 1 = I K
11 10 sseq2d F 1 = K B C I F 1 B C I K
12 11 3ad2ant2 F 0 = J F 1 = K F 2 = L B C I F 1 B C I K
13 fveq2 F 2 = L I F 2 = I L
14 13 sseq2d F 2 = L C D I F 2 C D I L
15 14 3ad2ant3 F 0 = J F 1 = K F 2 = L C D I F 2 C D I L
16 9 12 15 3anbi123d F 0 = J F 1 = K F 2 = L A B I F 0 B C I F 1 C D I F 2 A B I J B C I K C D I L
17 6 16 syl φ A B I F 0 B C I F 1 C D I F 2 A B I J B C I K C D I L
18 5 17 mpbird φ A B I F 0 B C I F 1 C D I F 2