Metamath Proof Explorer


Theorem 43prm

Description: 43 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 43prm 43

Proof

Step Hyp Ref Expression
1 4nn0 4 0
2 3nn 3
3 1 2 decnncl 43
4 8nn0 8 0
5 4 1 deccl 84 0
6 3nn0 3 0
7 1nn0 1 0
8 3lt10 3 < 10
9 8nn 8
10 4lt10 4 < 10
11 9 1 1 10 declti 4 < 84
12 1 5 6 7 8 11 decltc 43 < 841
13 4nn 4
14 1lt10 1 < 10
15 13 6 7 14 declti 1 < 43
16 2cn 2
17 16 mulid2i 1 2 = 2
18 df-3 3 = 2 + 1
19 1 7 17 18 dec2dvds ¬ 2 43
20 7 1 deccl 14 0
21 1nn 1
22 0nn0 0 0
23 eqid 14 = 14
24 7 dec0h 1 = 01
25 3cn 3
26 25 mulid1i 3 1 = 3
27 ax-1cn 1
28 27 addid2i 0 + 1 = 1
29 26 28 oveq12i 3 1 + 0 + 1 = 3 + 1
30 3p1e4 3 + 1 = 4
31 29 30 eqtri 3 1 + 0 + 1 = 4
32 2nn0 2 0
33 2p1e3 2 + 1 = 3
34 4cn 4
35 4t3e12 4 3 = 12
36 34 25 35 mulcomli 3 4 = 12
37 7 32 33 36 decsuc 3 4 + 1 = 13
38 7 1 22 7 23 24 6 6 7 31 37 decma2c 3 14 + 1 = 43
39 1lt3 1 < 3
40 2 20 21 38 39 ndvdsi ¬ 3 43
41 3lt5 3 < 5
42 1 2 41 dec5dvds ¬ 5 43
43 7nn 7
44 6nn0 6 0
45 7t6e42 7 6 = 42
46 1 32 33 45 decsuc 7 6 + 1 = 43
47 1lt7 1 < 7
48 43 44 21 46 47 ndvdsi ¬ 7 43
49 7 21 decnncl 11
50 21 decnncl2 10
51 eqid 11 = 11
52 eqid 10 = 10
53 25 mulid2i 1 3 = 3
54 27 addid1i 1 + 0 = 1
55 53 54 oveq12i 1 3 + 1 + 0 = 3 + 1
56 55 30 eqtri 1 3 + 1 + 0 = 4
57 53 oveq1i 1 3 + 0 = 3 + 0
58 25 addid1i 3 + 0 = 3
59 6 dec0h 3 = 03
60 57 58 59 3eqtri 1 3 + 0 = 03
61 7 7 7 22 51 52 6 6 22 56 60 decmac 11 3 + 10 = 43
62 0lt1 0 < 1
63 7 22 21 62 declt 10 < 11
64 49 6 50 61 63 ndvdsi ¬ 11 43
65 7 2 decnncl 13
66 eqid 13 = 13
67 1 dec0h 4 = 04
68 53 28 oveq12i 1 3 + 0 + 1 = 3 + 1
69 68 30 eqtri 1 3 + 0 + 1 = 4
70 3t3e9 3 3 = 9
71 70 oveq1i 3 3 + 4 = 9 + 4
72 9p4e13 9 + 4 = 13
73 71 72 eqtri 3 3 + 4 = 13
74 7 6 22 1 66 67 6 6 7 69 73 decmac 13 3 + 4 = 43
75 21 6 1 10 declti 4 < 13
76 65 6 13 74 75 ndvdsi ¬ 13 43
77 7 43 decnncl 17
78 9nn 9
79 43 nnnn0i 7 0
80 78 nnnn0i 9 0
81 eqid 17 = 17
82 80 dec0h 9 = 09
83 16 addid2i 0 + 2 = 2
84 17 83 oveq12i 1 2 + 0 + 2 = 2 + 2
85 2p2e4 2 + 2 = 4
86 84 85 eqtri 1 2 + 0 + 2 = 4
87 7t2e14 7 2 = 14
88 1p1e2 1 + 1 = 2
89 78 nncni 9
90 89 34 72 addcomli 4 + 9 = 13
91 7 1 80 87 88 6 90 decaddci 7 2 + 9 = 23
92 7 79 22 80 81 82 32 6 32 86 91 decmac 17 2 + 9 = 43
93 9lt10 9 < 10
94 21 79 80 93 declti 9 < 17
95 77 32 78 92 94 ndvdsi ¬ 17 43
96 7 78 decnncl 19
97 5nn 5
98 97 nnnn0i 5 0
99 eqid 19 = 19
100 98 dec0h 5 = 05
101 9t2e18 9 2 = 18
102 8p5e13 8 + 5 = 13
103 7 4 98 101 88 6 102 decaddci 9 2 + 5 = 23
104 7 80 22 98 99 100 32 6 32 86 103 decmac 19 2 + 5 = 43
105 5lt10 5 < 10
106 21 80 98 105 declti 5 < 19
107 96 32 97 104 106 ndvdsi ¬ 19 43
108 32 2 decnncl 23
109 2nn 2
110 109 decnncl2 20
111 108 nncni 23
112 111 mulid1i 23 1 = 23
113 eqid 20 = 20
114 32 6 32 22 112 113 85 58 decadd 23 1 + 20 = 43
115 3pos 0 < 3
116 32 22 2 115 declt 20 < 23
117 108 7 110 114 116 ndvdsi ¬ 23 43
118 3 12 15 19 40 42 48 64 76 95 107 117 prmlem2 43