Metamath Proof Explorer


Theorem 4at

Description: Four atoms determine a lattice volume uniquely. Three-dimensional analogue of ps-1 and 3at . (Contributed by NM, 11-Jul-2012)

Ref Expression
Hypotheses 4at.l ˙ = K
4at.j ˙ = join K
4at.a A = Atoms K
Assertion 4at K HL P A Q A R A S A T A U A V A W A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R P ˙ Q ˙ R ˙ S ˙ T ˙ U ˙ V ˙ W P ˙ Q ˙ R ˙ S = T ˙ U ˙ V ˙ W

Proof

Step Hyp Ref Expression
1 4at.l ˙ = K
2 4at.j ˙ = join K
3 4at.a A = Atoms K
4 1 2 3 4atlem12 K HL P A Q A R A S A T A U A V A W A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R P ˙ Q ˙ R ˙ S ˙ T ˙ U ˙ V ˙ W P ˙ Q ˙ R ˙ S = T ˙ U ˙ V ˙ W
5 simp11 K HL P A Q A R A S A T A U A V A W A K HL
6 5 hllatd K HL P A Q A R A S A T A U A V A W A K Lat
7 simp23 K HL P A Q A R A S A T A U A V A W A T A
8 simp31 K HL P A Q A R A S A T A U A V A W A U A
9 eqid Base K = Base K
10 9 2 3 hlatjcl K HL T A U A T ˙ U Base K
11 5 7 8 10 syl3anc K HL P A Q A R A S A T A U A V A W A T ˙ U Base K
12 simp32 K HL P A Q A R A S A T A U A V A W A V A
13 simp33 K HL P A Q A R A S A T A U A V A W A W A
14 9 2 3 hlatjcl K HL V A W A V ˙ W Base K
15 5 12 13 14 syl3anc K HL P A Q A R A S A T A U A V A W A V ˙ W Base K
16 9 2 latjcl K Lat T ˙ U Base K V ˙ W Base K T ˙ U ˙ V ˙ W Base K
17 6 11 15 16 syl3anc K HL P A Q A R A S A T A U A V A W A T ˙ U ˙ V ˙ W Base K
18 9 1 latref K Lat T ˙ U ˙ V ˙ W Base K T ˙ U ˙ V ˙ W ˙ T ˙ U ˙ V ˙ W
19 6 17 18 syl2anc K HL P A Q A R A S A T A U A V A W A T ˙ U ˙ V ˙ W ˙ T ˙ U ˙ V ˙ W
20 breq1 P ˙ Q ˙ R ˙ S = T ˙ U ˙ V ˙ W P ˙ Q ˙ R ˙ S ˙ T ˙ U ˙ V ˙ W T ˙ U ˙ V ˙ W ˙ T ˙ U ˙ V ˙ W
21 19 20 syl5ibrcom K HL P A Q A R A S A T A U A V A W A P ˙ Q ˙ R ˙ S = T ˙ U ˙ V ˙ W P ˙ Q ˙ R ˙ S ˙ T ˙ U ˙ V ˙ W
22 21 adantr K HL P A Q A R A S A T A U A V A W A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R P ˙ Q ˙ R ˙ S = T ˙ U ˙ V ˙ W P ˙ Q ˙ R ˙ S ˙ T ˙ U ˙ V ˙ W
23 4 22 impbid K HL P A Q A R A S A T A U A V A W A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R P ˙ Q ˙ R ˙ S ˙ T ˙ U ˙ V ˙ W P ˙ Q ˙ R ˙ S = T ˙ U ˙ V ˙ W