Step |
Hyp |
Ref |
Expression |
1 |
|
4that.l |
|
2 |
|
4that.j |
|
3 |
|
4that.a |
|
4 |
|
4that.h |
|
5 |
|
simp21l |
|
6 |
5
|
ad2antrr |
|
7 |
|
simp21r |
|
8 |
7
|
ad2antrr |
|
9 |
|
oveq1 |
|
10 |
9
|
eqcoms |
|
11 |
10
|
adantl |
|
12 |
|
breq1 |
|
13 |
12
|
notbid |
|
14 |
|
oveq2 |
|
15 |
|
oveq2 |
|
16 |
14 15
|
eqeq12d |
|
17 |
13 16
|
anbi12d |
|
18 |
17
|
rspcev |
|
19 |
6 8 11 18
|
syl12anc |
|
20 |
|
simpl3r |
|
21 |
20
|
ad2antrr |
|
22 |
|
breq1 |
|
23 |
22
|
notbid |
|
24 |
|
oveq2 |
|
25 |
|
oveq2 |
|
26 |
24 25
|
eqeq12d |
|
27 |
23 26
|
anbi12d |
|
28 |
27
|
cbvrexvw |
|
29 |
|
oveq1 |
|
30 |
29
|
eqeq2d |
|
31 |
30
|
anbi2d |
|
32 |
31
|
rexbidv |
|
33 |
28 32
|
bitr4id |
|
34 |
33
|
adantl |
|
35 |
21 34
|
mpbid |
|
36 |
|
simp22l |
|
37 |
36
|
ad3antrrr |
|
38 |
|
simp22r |
|
39 |
38
|
ad3antrrr |
|
40 |
|
simp3l |
|
41 |
40
|
necomd |
|
42 |
41
|
ad3antrrr |
|
43 |
|
simpr |
|
44 |
43
|
necomd |
|
45 |
|
simpllr |
|
46 |
|
simp1l |
|
47 |
|
hlcvl |
|
48 |
46 47
|
syl |
|
49 |
48
|
ad3antrrr |
|
50 |
|
simp23 |
|
51 |
50
|
ad3antrrr |
|
52 |
5
|
ad3antrrr |
|
53 |
|
simplr |
|
54 |
1 2 3
|
cvlatexch1 |
|
55 |
49 51 37 52 53 54
|
syl131anc |
|
56 |
45 55
|
mpd |
|
57 |
53
|
necomd |
|
58 |
3 1 2
|
cvlsupr2 |
|
59 |
49 52 51 37 57 58
|
syl131anc |
|
60 |
42 44 56 59
|
mpbir3and |
|
61 |
|
breq1 |
|
62 |
61
|
notbid |
|
63 |
|
oveq2 |
|
64 |
|
oveq2 |
|
65 |
63 64
|
eqeq12d |
|
66 |
62 65
|
anbi12d |
|
67 |
66
|
rspcev |
|
68 |
37 39 60 67
|
syl12anc |
|
69 |
35 68
|
pm2.61dane |
|
70 |
19 69
|
pm2.61dane |
|
71 |
|
simpl1 |
|
72 |
|
simpl2 |
|
73 |
|
simpl3l |
|
74 |
|
simpr |
|
75 |
|
simpl3r |
|
76 |
1 2 3 4
|
4atexlem7 |
|
77 |
71 72 73 74 75 76
|
syl113anc |
|
78 |
70 77
|
pm2.61dan |
|