| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4that.l |
|
| 2 |
|
4that.j |
|
| 3 |
|
4that.a |
|
| 4 |
|
4that.h |
|
| 5 |
|
simp21l |
|
| 6 |
5
|
ad2antrr |
|
| 7 |
|
simp21r |
|
| 8 |
7
|
ad2antrr |
|
| 9 |
|
oveq1 |
|
| 10 |
9
|
eqcoms |
|
| 11 |
10
|
adantl |
|
| 12 |
|
breq1 |
|
| 13 |
12
|
notbid |
|
| 14 |
|
oveq2 |
|
| 15 |
|
oveq2 |
|
| 16 |
14 15
|
eqeq12d |
|
| 17 |
13 16
|
anbi12d |
|
| 18 |
17
|
rspcev |
|
| 19 |
6 8 11 18
|
syl12anc |
|
| 20 |
|
simpl3r |
|
| 21 |
20
|
ad2antrr |
|
| 22 |
|
breq1 |
|
| 23 |
22
|
notbid |
|
| 24 |
|
oveq2 |
|
| 25 |
|
oveq2 |
|
| 26 |
24 25
|
eqeq12d |
|
| 27 |
23 26
|
anbi12d |
|
| 28 |
27
|
cbvrexvw |
|
| 29 |
|
oveq1 |
|
| 30 |
29
|
eqeq2d |
|
| 31 |
30
|
anbi2d |
|
| 32 |
31
|
rexbidv |
|
| 33 |
28 32
|
bitr4id |
|
| 34 |
33
|
adantl |
|
| 35 |
21 34
|
mpbid |
|
| 36 |
|
simp22l |
|
| 37 |
36
|
ad3antrrr |
|
| 38 |
|
simp22r |
|
| 39 |
38
|
ad3antrrr |
|
| 40 |
|
simp3l |
|
| 41 |
40
|
necomd |
|
| 42 |
41
|
ad3antrrr |
|
| 43 |
|
simpr |
|
| 44 |
43
|
necomd |
|
| 45 |
|
simpllr |
|
| 46 |
|
simp1l |
|
| 47 |
|
hlcvl |
|
| 48 |
46 47
|
syl |
|
| 49 |
48
|
ad3antrrr |
|
| 50 |
|
simp23 |
|
| 51 |
50
|
ad3antrrr |
|
| 52 |
5
|
ad3antrrr |
|
| 53 |
|
simplr |
|
| 54 |
1 2 3
|
cvlatexch1 |
|
| 55 |
49 51 37 52 53 54
|
syl131anc |
|
| 56 |
45 55
|
mpd |
|
| 57 |
53
|
necomd |
|
| 58 |
3 1 2
|
cvlsupr2 |
|
| 59 |
49 52 51 37 57 58
|
syl131anc |
|
| 60 |
42 44 56 59
|
mpbir3and |
|
| 61 |
|
breq1 |
|
| 62 |
61
|
notbid |
|
| 63 |
|
oveq2 |
|
| 64 |
|
oveq2 |
|
| 65 |
63 64
|
eqeq12d |
|
| 66 |
62 65
|
anbi12d |
|
| 67 |
66
|
rspcev |
|
| 68 |
37 39 60 67
|
syl12anc |
|
| 69 |
35 68
|
pm2.61dane |
|
| 70 |
19 69
|
pm2.61dane |
|
| 71 |
|
simpl1 |
|
| 72 |
|
simpl2 |
|
| 73 |
|
simpl3l |
|
| 74 |
|
simpr |
|
| 75 |
|
simpl3r |
|
| 76 |
1 2 3 4
|
4atexlem7 |
|
| 77 |
71 72 73 74 75 76
|
syl113anc |
|
| 78 |
70 77
|
pm2.61dan |
|