Metamath Proof Explorer


Theorem 4atex

Description: Whenever there are at least 4 atoms under P .\/ Q (specifically, P , Q , r , and ( P .\/ Q ) ./\ W ), there are also at least 4 atoms under P .\/ S . This proves the statement in Lemma E of Crawley p. 114, last line, "...p \/ q/0 and hence p \/ s/0 contains at least four atoms..." Note that by cvlsupr2 , our ( P .\/ r ) = ( Q .\/ r ) is a shorter way to express r =/= P /\ r =/= Q /\ r .<_ ( P .\/ Q ) . (Contributed by NM, 27-May-2013)

Ref Expression
Hypotheses 4that.l ˙ = K
4that.j ˙ = join K
4that.a A = Atoms K
4that.h H = LHyp K
Assertion 4atex K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W P ˙ z = S ˙ z

Proof

Step Hyp Ref Expression
1 4that.l ˙ = K
2 4that.j ˙ = join K
3 4that.a A = Atoms K
4 4that.h H = LHyp K
5 simp21l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r P A
6 5 ad2antrr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r S ˙ P ˙ Q S = P P A
7 simp21r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r ¬ P ˙ W
8 7 ad2antrr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r S ˙ P ˙ Q S = P ¬ P ˙ W
9 oveq1 P = S P ˙ P = S ˙ P
10 9 eqcoms S = P P ˙ P = S ˙ P
11 10 adantl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r S ˙ P ˙ Q S = P P ˙ P = S ˙ P
12 breq1 z = P z ˙ W P ˙ W
13 12 notbid z = P ¬ z ˙ W ¬ P ˙ W
14 oveq2 z = P P ˙ z = P ˙ P
15 oveq2 z = P S ˙ z = S ˙ P
16 14 15 eqeq12d z = P P ˙ z = S ˙ z P ˙ P = S ˙ P
17 13 16 anbi12d z = P ¬ z ˙ W P ˙ z = S ˙ z ¬ P ˙ W P ˙ P = S ˙ P
18 17 rspcev P A ¬ P ˙ W P ˙ P = S ˙ P z A ¬ z ˙ W P ˙ z = S ˙ z
19 6 8 11 18 syl12anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r S ˙ P ˙ Q S = P z A ¬ z ˙ W P ˙ z = S ˙ z
20 simpl3r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r S ˙ P ˙ Q r A ¬ r ˙ W P ˙ r = Q ˙ r
21 20 ad2antrr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r S ˙ P ˙ Q S P S = Q r A ¬ r ˙ W P ˙ r = Q ˙ r
22 breq1 r = z r ˙ W z ˙ W
23 22 notbid r = z ¬ r ˙ W ¬ z ˙ W
24 oveq2 r = z P ˙ r = P ˙ z
25 oveq2 r = z Q ˙ r = Q ˙ z
26 24 25 eqeq12d r = z P ˙ r = Q ˙ r P ˙ z = Q ˙ z
27 23 26 anbi12d r = z ¬ r ˙ W P ˙ r = Q ˙ r ¬ z ˙ W P ˙ z = Q ˙ z
28 27 cbvrexvw r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W P ˙ z = Q ˙ z
29 oveq1 S = Q S ˙ z = Q ˙ z
30 29 eqeq2d S = Q P ˙ z = S ˙ z P ˙ z = Q ˙ z
31 30 anbi2d S = Q ¬ z ˙ W P ˙ z = S ˙ z ¬ z ˙ W P ˙ z = Q ˙ z
32 31 rexbidv S = Q z A ¬ z ˙ W P ˙ z = S ˙ z z A ¬ z ˙ W P ˙ z = Q ˙ z
33 28 32 bitr4id S = Q r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W P ˙ z = S ˙ z
34 33 adantl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r S ˙ P ˙ Q S P S = Q r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W P ˙ z = S ˙ z
35 21 34 mpbid K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r S ˙ P ˙ Q S P S = Q z A ¬ z ˙ W P ˙ z = S ˙ z
36 simp22l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r Q A
37 36 ad3antrrr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r S ˙ P ˙ Q S P S Q Q A
38 simp22r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r ¬ Q ˙ W
39 38 ad3antrrr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r S ˙ P ˙ Q S P S Q ¬ Q ˙ W
40 simp3l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r P Q
41 40 necomd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r Q P
42 41 ad3antrrr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r S ˙ P ˙ Q S P S Q Q P
43 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r S ˙ P ˙ Q S P S Q S Q
44 43 necomd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r S ˙ P ˙ Q S P S Q Q S
45 simpllr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r S ˙ P ˙ Q S P S Q S ˙ P ˙ Q
46 simp1l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r K HL
47 hlcvl K HL K CvLat
48 46 47 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r K CvLat
49 48 ad3antrrr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r S ˙ P ˙ Q S P S Q K CvLat
50 simp23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r S A
51 50 ad3antrrr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r S ˙ P ˙ Q S P S Q S A
52 5 ad3antrrr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r S ˙ P ˙ Q S P S Q P A
53 simplr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r S ˙ P ˙ Q S P S Q S P
54 1 2 3 cvlatexch1 K CvLat S A Q A P A S P S ˙ P ˙ Q Q ˙ P ˙ S
55 49 51 37 52 53 54 syl131anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r S ˙ P ˙ Q S P S Q S ˙ P ˙ Q Q ˙ P ˙ S
56 45 55 mpd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r S ˙ P ˙ Q S P S Q Q ˙ P ˙ S
57 53 necomd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r S ˙ P ˙ Q S P S Q P S
58 3 1 2 cvlsupr2 K CvLat P A S A Q A P S P ˙ Q = S ˙ Q Q P Q S Q ˙ P ˙ S
59 49 52 51 37 57 58 syl131anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r S ˙ P ˙ Q S P S Q P ˙ Q = S ˙ Q Q P Q S Q ˙ P ˙ S
60 42 44 56 59 mpbir3and K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r S ˙ P ˙ Q S P S Q P ˙ Q = S ˙ Q
61 breq1 z = Q z ˙ W Q ˙ W
62 61 notbid z = Q ¬ z ˙ W ¬ Q ˙ W
63 oveq2 z = Q P ˙ z = P ˙ Q
64 oveq2 z = Q S ˙ z = S ˙ Q
65 63 64 eqeq12d z = Q P ˙ z = S ˙ z P ˙ Q = S ˙ Q
66 62 65 anbi12d z = Q ¬ z ˙ W P ˙ z = S ˙ z ¬ Q ˙ W P ˙ Q = S ˙ Q
67 66 rspcev Q A ¬ Q ˙ W P ˙ Q = S ˙ Q z A ¬ z ˙ W P ˙ z = S ˙ z
68 37 39 60 67 syl12anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r S ˙ P ˙ Q S P S Q z A ¬ z ˙ W P ˙ z = S ˙ z
69 35 68 pm2.61dane K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r S ˙ P ˙ Q S P z A ¬ z ˙ W P ˙ z = S ˙ z
70 19 69 pm2.61dane K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r S ˙ P ˙ Q z A ¬ z ˙ W P ˙ z = S ˙ z
71 simpl1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r ¬ S ˙ P ˙ Q K HL W H
72 simpl2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r ¬ S ˙ P ˙ Q P A ¬ P ˙ W Q A ¬ Q ˙ W S A
73 simpl3l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r ¬ S ˙ P ˙ Q P Q
74 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r ¬ S ˙ P ˙ Q ¬ S ˙ P ˙ Q
75 simpl3r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r ¬ S ˙ P ˙ Q r A ¬ r ˙ W P ˙ r = Q ˙ r
76 1 2 3 4 4atexlem7 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q ¬ S ˙ P ˙ Q r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W P ˙ z = S ˙ z
77 71 72 73 74 75 76 syl113anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r ¬ S ˙ P ˙ Q z A ¬ z ˙ W P ˙ z = S ˙ z
78 70 77 pm2.61dan K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W P ˙ z = S ˙ z