Metamath Proof Explorer


Theorem 4atex2-0aOLDN

Description: Same as 4atex2 except that S is zero. (Contributed by NM, 27-May-2013) (New usage is discouraged.)

Ref Expression
Hypotheses 4that.l ˙ = K
4that.j ˙ = join K
4that.a A = Atoms K
4that.h H = LHyp K
Assertion 4atex2-0aOLDN K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S = 0. K P Q T A ¬ T ˙ W r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W S ˙ z = T ˙ z

Proof

Step Hyp Ref Expression
1 4that.l ˙ = K
2 4that.j ˙ = join K
3 4that.a A = Atoms K
4 4that.h H = LHyp K
5 simp32l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S = 0. K P Q T A ¬ T ˙ W r A ¬ r ˙ W P ˙ r = Q ˙ r T A
6 simp32r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S = 0. K P Q T A ¬ T ˙ W r A ¬ r ˙ W P ˙ r = Q ˙ r ¬ T ˙ W
7 simp1l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S = 0. K P Q T A ¬ T ˙ W r A ¬ r ˙ W P ˙ r = Q ˙ r K HL
8 hlol K HL K OL
9 7 8 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S = 0. K P Q T A ¬ T ˙ W r A ¬ r ˙ W P ˙ r = Q ˙ r K OL
10 eqid Base K = Base K
11 10 3 atbase T A T Base K
12 5 11 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S = 0. K P Q T A ¬ T ˙ W r A ¬ r ˙ W P ˙ r = Q ˙ r T Base K
13 eqid 0. K = 0. K
14 10 2 13 olj02 K OL T Base K 0. K ˙ T = T
15 9 12 14 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S = 0. K P Q T A ¬ T ˙ W r A ¬ r ˙ W P ˙ r = Q ˙ r 0. K ˙ T = T
16 simp23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S = 0. K P Q T A ¬ T ˙ W r A ¬ r ˙ W P ˙ r = Q ˙ r S = 0. K
17 16 oveq1d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S = 0. K P Q T A ¬ T ˙ W r A ¬ r ˙ W P ˙ r = Q ˙ r S ˙ T = 0. K ˙ T
18 2 3 hlatjidm K HL T A T ˙ T = T
19 7 5 18 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S = 0. K P Q T A ¬ T ˙ W r A ¬ r ˙ W P ˙ r = Q ˙ r T ˙ T = T
20 15 17 19 3eqtr4d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S = 0. K P Q T A ¬ T ˙ W r A ¬ r ˙ W P ˙ r = Q ˙ r S ˙ T = T ˙ T
21 breq1 z = T z ˙ W T ˙ W
22 21 notbid z = T ¬ z ˙ W ¬ T ˙ W
23 oveq2 z = T S ˙ z = S ˙ T
24 oveq2 z = T T ˙ z = T ˙ T
25 23 24 eqeq12d z = T S ˙ z = T ˙ z S ˙ T = T ˙ T
26 22 25 anbi12d z = T ¬ z ˙ W S ˙ z = T ˙ z ¬ T ˙ W S ˙ T = T ˙ T
27 26 rspcev T A ¬ T ˙ W S ˙ T = T ˙ T z A ¬ z ˙ W S ˙ z = T ˙ z
28 5 6 20 27 syl12anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S = 0. K P Q T A ¬ T ˙ W r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W S ˙ z = T ˙ z