Metamath Proof Explorer


Theorem 4atex2-0cOLDN

Description: Same as 4atex2 except that S and T are zero. TODO: do we need this one or 4atex2-0aOLDN or 4atex2-0bOLDN ? (Contributed by NM, 27-May-2013) (New usage is discouraged.)

Ref Expression
Hypotheses 4that.l ˙ = K
4that.j ˙ = join K
4that.a A = Atoms K
4that.h H = LHyp K
Assertion 4atex2-0cOLDN K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S = 0. K P Q T = 0. K r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W S ˙ z = T ˙ z

Proof

Step Hyp Ref Expression
1 4that.l ˙ = K
2 4that.j ˙ = join K
3 4that.a A = Atoms K
4 4that.h H = LHyp K
5 simp21l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S = 0. K P Q T = 0. K r A ¬ r ˙ W P ˙ r = Q ˙ r P A
6 simp21r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S = 0. K P Q T = 0. K r A ¬ r ˙ W P ˙ r = Q ˙ r ¬ P ˙ W
7 simp23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S = 0. K P Q T = 0. K r A ¬ r ˙ W P ˙ r = Q ˙ r S = 0. K
8 7 oveq1d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S = 0. K P Q T = 0. K r A ¬ r ˙ W P ˙ r = Q ˙ r S ˙ P = 0. K ˙ P
9 simp32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S = 0. K P Q T = 0. K r A ¬ r ˙ W P ˙ r = Q ˙ r T = 0. K
10 9 oveq1d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S = 0. K P Q T = 0. K r A ¬ r ˙ W P ˙ r = Q ˙ r T ˙ P = 0. K ˙ P
11 8 10 eqtr4d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S = 0. K P Q T = 0. K r A ¬ r ˙ W P ˙ r = Q ˙ r S ˙ P = T ˙ P
12 breq1 z = P z ˙ W P ˙ W
13 12 notbid z = P ¬ z ˙ W ¬ P ˙ W
14 oveq2 z = P S ˙ z = S ˙ P
15 oveq2 z = P T ˙ z = T ˙ P
16 14 15 eqeq12d z = P S ˙ z = T ˙ z S ˙ P = T ˙ P
17 13 16 anbi12d z = P ¬ z ˙ W S ˙ z = T ˙ z ¬ P ˙ W S ˙ P = T ˙ P
18 17 rspcev P A ¬ P ˙ W S ˙ P = T ˙ P z A ¬ z ˙ W S ˙ z = T ˙ z
19 5 6 11 18 syl12anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S = 0. K P Q T = 0. K r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W S ˙ z = T ˙ z