Metamath Proof Explorer


Theorem 4atex3

Description: More general version of 4atex for a line S .\/ T not necessarily connected to P .\/ Q . (Contributed by NM, 29-May-2013)

Ref Expression
Hypotheses 4that.l ˙ = K
4that.j ˙ = join K
4that.a A = Atoms K
4that.h H = LHyp K
Assertion 4atex3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q T A S T r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z S z T z ˙ S ˙ T

Proof

Step Hyp Ref Expression
1 4that.l ˙ = K
2 4that.j ˙ = join K
3 4that.a A = Atoms K
4 4that.h H = LHyp K
5 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q T A S T r A ¬ r ˙ W P ˙ r = Q ˙ r K HL W H
6 simp2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q T A S T r A ¬ r ˙ W P ˙ r = Q ˙ r P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W
7 simp31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q T A S T r A ¬ r ˙ W P ˙ r = Q ˙ r P Q
8 simp32l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q T A S T r A ¬ r ˙ W P ˙ r = Q ˙ r T A
9 simp33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q T A S T r A ¬ r ˙ W P ˙ r = Q ˙ r r A ¬ r ˙ W P ˙ r = Q ˙ r
10 1 2 3 4 4atex2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q T A r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W S ˙ z = T ˙ z
11 5 6 7 8 9 10 syl113anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q T A S T r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W S ˙ z = T ˙ z
12 simp1l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q T A S T r A ¬ r ˙ W P ˙ r = Q ˙ r K HL
13 hlcvl K HL K CvLat
14 12 13 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q T A S T r A ¬ r ˙ W P ˙ r = Q ˙ r K CvLat
15 14 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q T A S T r A ¬ r ˙ W P ˙ r = Q ˙ r z A K CvLat
16 simp23l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q T A S T r A ¬ r ˙ W P ˙ r = Q ˙ r S A
17 16 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q T A S T r A ¬ r ˙ W P ˙ r = Q ˙ r z A S A
18 8 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q T A S T r A ¬ r ˙ W P ˙ r = Q ˙ r z A T A
19 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q T A S T r A ¬ r ˙ W P ˙ r = Q ˙ r z A z A
20 simp32r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q T A S T r A ¬ r ˙ W P ˙ r = Q ˙ r S T
21 20 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q T A S T r A ¬ r ˙ W P ˙ r = Q ˙ r z A S T
22 3 1 2 cvlsupr2 K CvLat S A T A z A S T S ˙ z = T ˙ z z S z T z ˙ S ˙ T
23 15 17 18 19 21 22 syl131anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q T A S T r A ¬ r ˙ W P ˙ r = Q ˙ r z A S ˙ z = T ˙ z z S z T z ˙ S ˙ T
24 23 anbi2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q T A S T r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W S ˙ z = T ˙ z ¬ z ˙ W z S z T z ˙ S ˙ T
25 24 rexbidva K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q T A S T r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W S ˙ z = T ˙ z z A ¬ z ˙ W z S z T z ˙ S ˙ T
26 11 25 mpbid K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q T A S T r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W z S z T z ˙ S ˙ T