Metamath Proof Explorer


Theorem 4atexlem7

Description: Whenever there are at least 4 atoms under P .\/ Q (specifically, P , Q , r , and ( P .\/ Q ) ./\ W ), there are also at least 4 atoms under P .\/ S . This proves the statement in Lemma E of Crawley p. 114, last line, "...p \/ q/0 and hence p \/ s/0 contains at least four atoms..." Note that by cvlsupr2 , our ( P .\/ r ) = ( Q .\/ r ) is a shorter way to express r =/= P /\ r =/= Q /\ r .<_ ( P .\/ Q ) . With a longer proof, the condition -. S .<_ ( P .\/ Q ) could be eliminated (see 4atex ), although for some purposes this more restricted lemma may be adequate. (Contributed by NM, 25-Nov-2012)

Ref Expression
Hypotheses 4that.l ˙ = K
4that.j ˙ = join K
4that.a A = Atoms K
4that.h H = LHyp K
Assertion 4atexlem7 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q ¬ S ˙ P ˙ Q r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W P ˙ z = S ˙ z

Proof

Step Hyp Ref Expression
1 4that.l ˙ = K
2 4that.j ˙ = join K
3 4that.a A = Atoms K
4 4that.h H = LHyp K
5 simp11l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q ¬ S ˙ P ˙ Q r A ¬ r ˙ W P ˙ r = Q ˙ r K HL W H
6 simp1r1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q ¬ S ˙ P ˙ Q P A ¬ P ˙ W
7 6 3ad2ant1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q ¬ S ˙ P ˙ Q r A ¬ r ˙ W P ˙ r = Q ˙ r P A ¬ P ˙ W
8 simp1r2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q ¬ S ˙ P ˙ Q Q A ¬ Q ˙ W
9 8 3ad2ant1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q ¬ S ˙ P ˙ Q r A ¬ r ˙ W P ˙ r = Q ˙ r Q A ¬ Q ˙ W
10 simp2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q ¬ S ˙ P ˙ Q r A ¬ r ˙ W P ˙ r = Q ˙ r r A
11 simp3l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q ¬ S ˙ P ˙ Q r A ¬ r ˙ W P ˙ r = Q ˙ r ¬ r ˙ W
12 10 11 jca K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q ¬ S ˙ P ˙ Q r A ¬ r ˙ W P ˙ r = Q ˙ r r A ¬ r ˙ W
13 simp1r3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q ¬ S ˙ P ˙ Q S A
14 13 3ad2ant1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q ¬ S ˙ P ˙ Q r A ¬ r ˙ W P ˙ r = Q ˙ r S A
15 simp3r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q ¬ S ˙ P ˙ Q r A ¬ r ˙ W P ˙ r = Q ˙ r P ˙ r = Q ˙ r
16 simp12 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q ¬ S ˙ P ˙ Q r A ¬ r ˙ W P ˙ r = Q ˙ r P Q
17 simp13 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q ¬ S ˙ P ˙ Q r A ¬ r ˙ W P ˙ r = Q ˙ r ¬ S ˙ P ˙ Q
18 eqid meet K = meet K
19 1 2 18 3 4 4atexlemex6 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W r A ¬ r ˙ W S A P ˙ r = Q ˙ r P Q ¬ S ˙ P ˙ Q z A ¬ z ˙ W P ˙ z = S ˙ z
20 5 7 9 12 14 15 16 17 19 syl323anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q ¬ S ˙ P ˙ Q r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W P ˙ z = S ˙ z
21 20 rexlimdv3a K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q ¬ S ˙ P ˙ Q r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W P ˙ z = S ˙ z
22 21 3exp K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q ¬ S ˙ P ˙ Q r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W P ˙ z = S ˙ z
23 22 3impd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q ¬ S ˙ P ˙ Q r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W P ˙ z = S ˙ z
24 23 3impia K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A P Q ¬ S ˙ P ˙ Q r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W P ˙ z = S ˙ z