Step |
Hyp |
Ref |
Expression |
1 |
|
4thatlem.ph |
|
2 |
|
4thatlem0.l |
|
3 |
|
4thatlem0.j |
|
4 |
|
4thatlem0.m |
|
5 |
|
4thatlem0.a |
|
6 |
|
4thatlem0.h |
|
7 |
|
4thatlem0.u |
|
8 |
|
4thatlem0.v |
|
9 |
|
4thatlem0.c |
|
10 |
1 2 3 4 5 6 7 8 9
|
4atexlemc |
|
11 |
10
|
adantr |
|
12 |
1 2 3 4 5 6 7 8 9
|
4atexlemnclw |
|
13 |
12
|
adantr |
|
14 |
1 2 3 4 5 6 7 8
|
4atexlemntlpq |
|
15 |
|
id |
|
16 |
9 15
|
eqtr3id |
|
17 |
16
|
adantl |
|
18 |
1
|
4atexlemkl |
|
19 |
1 3 5
|
4atexlemqtb |
|
20 |
1 3 5
|
4atexlempsb |
|
21 |
|
eqid |
|
22 |
21 2 4
|
latmle1 |
|
23 |
18 19 20 22
|
syl3anc |
|
24 |
1
|
4atexlemk |
|
25 |
1
|
4atexlemq |
|
26 |
1
|
4atexlemt |
|
27 |
3 5
|
hlatjcom |
|
28 |
24 25 26 27
|
syl3anc |
|
29 |
23 28
|
breqtrd |
|
30 |
29
|
adantr |
|
31 |
17 30
|
eqbrtrrd |
|
32 |
1
|
4atexlemkc |
|
33 |
1
|
4atexlemp |
|
34 |
1
|
4atexlempnq |
|
35 |
2 3 5
|
cvlatexch2 |
|
36 |
32 33 26 25 34 35
|
syl131anc |
|
37 |
36
|
adantr |
|
38 |
31 37
|
mpd |
|
39 |
38
|
ex |
|
40 |
39
|
necon3bd |
|
41 |
14 40
|
mpd |
|
42 |
41
|
adantr |
|
43 |
|
simpr |
|
44 |
21 2 4
|
latmle2 |
|
45 |
18 19 20 44
|
syl3anc |
|
46 |
9 45
|
eqbrtrid |
|
47 |
46
|
adantr |
|
48 |
1
|
4atexlems |
|
49 |
1 2 3 5
|
4atexlempns |
|
50 |
5 2 3
|
cvlsupr2 |
|
51 |
32 33 48 10 49 50
|
syl131anc |
|
52 |
51
|
adantr |
|
53 |
42 43 47 52
|
mpbir3and |
|
54 |
|
breq1 |
|
55 |
54
|
notbid |
|
56 |
|
oveq2 |
|
57 |
|
oveq2 |
|
58 |
56 57
|
eqeq12d |
|
59 |
55 58
|
anbi12d |
|
60 |
59
|
rspcev |
|
61 |
11 13 53 60
|
syl12anc |
|