Metamath Proof Explorer


Theorem 4atexlemex2

Description: Lemma for 4atexlem7 . Show that when C =/= S , C satisfies the existence condition of the consequent. (Contributed by NM, 25-Nov-2012)

Ref Expression
Hypotheses 4thatlem.ph φ K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A R A ¬ R ˙ W P ˙ R = Q ˙ R T A U ˙ T = V ˙ T P Q ¬ S ˙ P ˙ Q
4thatlem0.l ˙ = K
4thatlem0.j ˙ = join K
4thatlem0.m ˙ = meet K
4thatlem0.a A = Atoms K
4thatlem0.h H = LHyp K
4thatlem0.u U = P ˙ Q ˙ W
4thatlem0.v V = P ˙ S ˙ W
4thatlem0.c C = Q ˙ T ˙ P ˙ S
Assertion 4atexlemex2 φ C S z A ¬ z ˙ W P ˙ z = S ˙ z

Proof

Step Hyp Ref Expression
1 4thatlem.ph φ K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A R A ¬ R ˙ W P ˙ R = Q ˙ R T A U ˙ T = V ˙ T P Q ¬ S ˙ P ˙ Q
2 4thatlem0.l ˙ = K
3 4thatlem0.j ˙ = join K
4 4thatlem0.m ˙ = meet K
5 4thatlem0.a A = Atoms K
6 4thatlem0.h H = LHyp K
7 4thatlem0.u U = P ˙ Q ˙ W
8 4thatlem0.v V = P ˙ S ˙ W
9 4thatlem0.c C = Q ˙ T ˙ P ˙ S
10 1 2 3 4 5 6 7 8 9 4atexlemc φ C A
11 10 adantr φ C S C A
12 1 2 3 4 5 6 7 8 9 4atexlemnclw φ ¬ C ˙ W
13 12 adantr φ C S ¬ C ˙ W
14 1 2 3 4 5 6 7 8 4atexlemntlpq φ ¬ T ˙ P ˙ Q
15 id C = P C = P
16 9 15 syl5eqr C = P Q ˙ T ˙ P ˙ S = P
17 16 adantl φ C = P Q ˙ T ˙ P ˙ S = P
18 1 4atexlemkl φ K Lat
19 1 3 5 4atexlemqtb φ Q ˙ T Base K
20 1 3 5 4atexlempsb φ P ˙ S Base K
21 eqid Base K = Base K
22 21 2 4 latmle1 K Lat Q ˙ T Base K P ˙ S Base K Q ˙ T ˙ P ˙ S ˙ Q ˙ T
23 18 19 20 22 syl3anc φ Q ˙ T ˙ P ˙ S ˙ Q ˙ T
24 1 4atexlemk φ K HL
25 1 4atexlemq φ Q A
26 1 4atexlemt φ T A
27 3 5 hlatjcom K HL Q A T A Q ˙ T = T ˙ Q
28 24 25 26 27 syl3anc φ Q ˙ T = T ˙ Q
29 23 28 breqtrd φ Q ˙ T ˙ P ˙ S ˙ T ˙ Q
30 29 adantr φ C = P Q ˙ T ˙ P ˙ S ˙ T ˙ Q
31 17 30 eqbrtrrd φ C = P P ˙ T ˙ Q
32 1 4atexlemkc φ K CvLat
33 1 4atexlemp φ P A
34 1 4atexlempnq φ P Q
35 2 3 5 cvlatexch2 K CvLat P A T A Q A P Q P ˙ T ˙ Q T ˙ P ˙ Q
36 32 33 26 25 34 35 syl131anc φ P ˙ T ˙ Q T ˙ P ˙ Q
37 36 adantr φ C = P P ˙ T ˙ Q T ˙ P ˙ Q
38 31 37 mpd φ C = P T ˙ P ˙ Q
39 38 ex φ C = P T ˙ P ˙ Q
40 39 necon3bd φ ¬ T ˙ P ˙ Q C P
41 14 40 mpd φ C P
42 41 adantr φ C S C P
43 simpr φ C S C S
44 21 2 4 latmle2 K Lat Q ˙ T Base K P ˙ S Base K Q ˙ T ˙ P ˙ S ˙ P ˙ S
45 18 19 20 44 syl3anc φ Q ˙ T ˙ P ˙ S ˙ P ˙ S
46 9 45 eqbrtrid φ C ˙ P ˙ S
47 46 adantr φ C S C ˙ P ˙ S
48 1 4atexlems φ S A
49 1 2 3 5 4atexlempns φ P S
50 5 2 3 cvlsupr2 K CvLat P A S A C A P S P ˙ C = S ˙ C C P C S C ˙ P ˙ S
51 32 33 48 10 49 50 syl131anc φ P ˙ C = S ˙ C C P C S C ˙ P ˙ S
52 51 adantr φ C S P ˙ C = S ˙ C C P C S C ˙ P ˙ S
53 42 43 47 52 mpbir3and φ C S P ˙ C = S ˙ C
54 breq1 z = C z ˙ W C ˙ W
55 54 notbid z = C ¬ z ˙ W ¬ C ˙ W
56 oveq2 z = C P ˙ z = P ˙ C
57 oveq2 z = C S ˙ z = S ˙ C
58 56 57 eqeq12d z = C P ˙ z = S ˙ z P ˙ C = S ˙ C
59 55 58 anbi12d z = C ¬ z ˙ W P ˙ z = S ˙ z ¬ C ˙ W P ˙ C = S ˙ C
60 59 rspcev C A ¬ C ˙ W P ˙ C = S ˙ C z A ¬ z ˙ W P ˙ z = S ˙ z
61 11 13 53 60 syl12anc φ C S z A ¬ z ˙ W P ˙ z = S ˙ z