Metamath Proof Explorer


Theorem 4atexlemex4

Description: Lemma for 4atexlem7 . Show that when C = S , D satisfies the existence condition of the consequent. (Contributed by NM, 26-Nov-2012)

Ref Expression
Hypotheses 4thatlem.ph φ K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A R A ¬ R ˙ W P ˙ R = Q ˙ R T A U ˙ T = V ˙ T P Q ¬ S ˙ P ˙ Q
4thatlem0.l ˙ = K
4thatlem0.j ˙ = join K
4thatlem0.m ˙ = meet K
4thatlem0.a A = Atoms K
4thatlem0.h H = LHyp K
4thatlem0.u U = P ˙ Q ˙ W
4thatlem0.v V = P ˙ S ˙ W
4thatlem0.c C = Q ˙ T ˙ P ˙ S
4thatlem0.d D = R ˙ T ˙ P ˙ S
Assertion 4atexlemex4 φ C = S z A ¬ z ˙ W P ˙ z = S ˙ z

Proof

Step Hyp Ref Expression
1 4thatlem.ph φ K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A R A ¬ R ˙ W P ˙ R = Q ˙ R T A U ˙ T = V ˙ T P Q ¬ S ˙ P ˙ Q
2 4thatlem0.l ˙ = K
3 4thatlem0.j ˙ = join K
4 4thatlem0.m ˙ = meet K
5 4thatlem0.a A = Atoms K
6 4thatlem0.h H = LHyp K
7 4thatlem0.u U = P ˙ Q ˙ W
8 4thatlem0.v V = P ˙ S ˙ W
9 4thatlem0.c C = Q ˙ T ˙ P ˙ S
10 4thatlem0.d D = R ˙ T ˙ P ˙ S
11 1 2 3 5 7 4atexlemswapqr φ K HL W H P A ¬ P ˙ W R A ¬ R ˙ W S A Q A ¬ Q ˙ W P ˙ Q = R ˙ Q T A P ˙ R ˙ W ˙ T = V ˙ T P R ¬ S ˙ P ˙ R
12 1 2 3 4 5 6 7 8 9 10 4atexlemcnd φ C D
13 pm13.18 C = S C D S D
14 13 necomd C = S C D D S
15 14 expcom C D C = S D S
16 12 15 syl φ C = S D S
17 biid K HL W H P A ¬ P ˙ W R A ¬ R ˙ W S A Q A ¬ Q ˙ W P ˙ Q = R ˙ Q T A P ˙ R ˙ W ˙ T = V ˙ T P R ¬ S ˙ P ˙ R K HL W H P A ¬ P ˙ W R A ¬ R ˙ W S A Q A ¬ Q ˙ W P ˙ Q = R ˙ Q T A P ˙ R ˙ W ˙ T = V ˙ T P R ¬ S ˙ P ˙ R
18 eqid P ˙ R ˙ W = P ˙ R ˙ W
19 17 2 3 4 5 6 18 8 10 4atexlemex2 K HL W H P A ¬ P ˙ W R A ¬ R ˙ W S A Q A ¬ Q ˙ W P ˙ Q = R ˙ Q T A P ˙ R ˙ W ˙ T = V ˙ T P R ¬ S ˙ P ˙ R D S z A ¬ z ˙ W P ˙ z = S ˙ z
20 11 16 19 syl6an φ C = S z A ¬ z ˙ W P ˙ z = S ˙ z
21 20 imp φ C = S z A ¬ z ˙ W P ˙ z = S ˙ z