Metamath Proof Explorer


Theorem 4atexlemntlpq

Description: Lemma for 4atexlem7 . (Contributed by NM, 24-Nov-2012)

Ref Expression
Hypotheses 4thatlem.ph φ K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A R A ¬ R ˙ W P ˙ R = Q ˙ R T A U ˙ T = V ˙ T P Q ¬ S ˙ P ˙ Q
4thatlem0.l ˙ = K
4thatlem0.j ˙ = join K
4thatlem0.m ˙ = meet K
4thatlem0.a A = Atoms K
4thatlem0.h H = LHyp K
4thatlem0.u U = P ˙ Q ˙ W
4thatlem0.v V = P ˙ S ˙ W
Assertion 4atexlemntlpq φ ¬ T ˙ P ˙ Q

Proof

Step Hyp Ref Expression
1 4thatlem.ph φ K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A R A ¬ R ˙ W P ˙ R = Q ˙ R T A U ˙ T = V ˙ T P Q ¬ S ˙ P ˙ Q
2 4thatlem0.l ˙ = K
3 4thatlem0.j ˙ = join K
4 4thatlem0.m ˙ = meet K
5 4thatlem0.a A = Atoms K
6 4thatlem0.h H = LHyp K
7 4thatlem0.u U = P ˙ Q ˙ W
8 4thatlem0.v V = P ˙ S ˙ W
9 1 2 3 4 5 6 7 8 4atexlemtlw φ T ˙ W
10 1 4atexlemkc φ K CvLat
11 1 2 3 4 5 6 7 4atexlemu φ U A
12 1 2 3 4 5 6 7 8 4atexlemv φ V A
13 1 4atexlemt φ T A
14 1 2 3 4 5 6 7 8 4atexlemunv φ U V
15 1 4atexlemutvt φ U ˙ T = V ˙ T
16 5 3 cvlsupr5 K CvLat U A V A T A U V U ˙ T = V ˙ T T U
17 10 11 12 13 14 15 16 syl132anc φ T U
18 17 adantr φ T ˙ P ˙ Q T U
19 1 4atexlemk φ K HL
20 1 4atexlemw φ W H
21 19 20 jca φ K HL W H
22 21 adantr φ T ˙ P ˙ Q K HL W H
23 1 4atexlempw φ P A ¬ P ˙ W
24 23 adantr φ T ˙ P ˙ Q P A ¬ P ˙ W
25 1 4atexlemq φ Q A
26 25 adantr φ T ˙ P ˙ Q Q A
27 13 adantr φ T ˙ P ˙ Q T A
28 1 4atexlempnq φ P Q
29 28 adantr φ T ˙ P ˙ Q P Q
30 simpr φ T ˙ P ˙ Q T ˙ P ˙ Q
31 2 3 4 5 6 7 lhpat3 K HL W H P A ¬ P ˙ W Q A T A P Q T ˙ P ˙ Q ¬ T ˙ W T U
32 22 24 26 27 29 30 31 syl222anc φ T ˙ P ˙ Q ¬ T ˙ W T U
33 18 32 mpbird φ T ˙ P ˙ Q ¬ T ˙ W
34 33 ex φ T ˙ P ˙ Q ¬ T ˙ W
35 9 34 mt2d φ ¬ T ˙ P ˙ Q