Metamath Proof Explorer


Theorem 4atexlemtlw

Description: Lemma for 4atexlem7 . (Contributed by NM, 24-Nov-2012)

Ref Expression
Hypotheses 4thatlem.ph φKHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RTAU˙T=V˙TPQ¬S˙P˙Q
4thatlem0.l ˙=K
4thatlem0.j ˙=joinK
4thatlem0.m ˙=meetK
4thatlem0.a A=AtomsK
4thatlem0.h H=LHypK
4thatlem0.u U=P˙Q˙W
4thatlem0.v V=P˙S˙W
Assertion 4atexlemtlw φT˙W

Proof

Step Hyp Ref Expression
1 4thatlem.ph φKHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RTAU˙T=V˙TPQ¬S˙P˙Q
2 4thatlem0.l ˙=K
3 4thatlem0.j ˙=joinK
4 4thatlem0.m ˙=meetK
5 4thatlem0.a A=AtomsK
6 4thatlem0.h H=LHypK
7 4thatlem0.u U=P˙Q˙W
8 4thatlem0.v V=P˙S˙W
9 eqid BaseK=BaseK
10 1 4atexlemkl φKLat
11 1 4atexlemt φTA
12 9 5 atbase TATBaseK
13 11 12 syl φTBaseK
14 1 4atexlemk φKHL
15 1 2 3 4 5 6 7 4atexlemu φUA
16 1 2 3 4 5 6 7 8 4atexlemv φVA
17 9 3 5 hlatjcl KHLUAVAU˙VBaseK
18 14 15 16 17 syl3anc φU˙VBaseK
19 1 6 4atexlemwb φWBaseK
20 1 4atexlemkc φKCvLat
21 1 2 3 4 5 6 7 8 4atexlemunv φUV
22 1 4atexlemutvt φU˙T=V˙T
23 5 2 3 cvlsupr4 KCvLatUAVATAUVU˙T=V˙TT˙U˙V
24 20 15 16 11 21 22 23 syl132anc φT˙U˙V
25 1 4atexlemp φPA
26 1 4atexlemq φQA
27 9 3 5 hlatjcl KHLPAQAP˙QBaseK
28 14 25 26 27 syl3anc φP˙QBaseK
29 9 2 4 latmle2 KLatP˙QBaseKWBaseKP˙Q˙W˙W
30 10 28 19 29 syl3anc φP˙Q˙W˙W
31 7 30 eqbrtrid φU˙W
32 1 3 5 4atexlempsb φP˙SBaseK
33 9 2 4 latmle2 KLatP˙SBaseKWBaseKP˙S˙W˙W
34 10 32 19 33 syl3anc φP˙S˙W˙W
35 8 34 eqbrtrid φV˙W
36 9 5 atbase UAUBaseK
37 15 36 syl φUBaseK
38 9 5 atbase VAVBaseK
39 16 38 syl φVBaseK
40 9 2 3 latjle12 KLatUBaseKVBaseKWBaseKU˙WV˙WU˙V˙W
41 10 37 39 19 40 syl13anc φU˙WV˙WU˙V˙W
42 31 35 41 mpbi2and φU˙V˙W
43 9 2 10 13 18 19 24 42 lattrd φT˙W