Metamath Proof Explorer


Theorem 4atexlemunv

Description: Lemma for 4atexlem7 . (Contributed by NM, 21-Nov-2012)

Ref Expression
Hypotheses 4thatlem.ph φ K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A R A ¬ R ˙ W P ˙ R = Q ˙ R T A U ˙ T = V ˙ T P Q ¬ S ˙ P ˙ Q
4thatlem0.l ˙ = K
4thatlem0.j ˙ = join K
4thatlem0.m ˙ = meet K
4thatlem0.a A = Atoms K
4thatlem0.h H = LHyp K
4thatlem0.u U = P ˙ Q ˙ W
4thatlem0.v V = P ˙ S ˙ W
Assertion 4atexlemunv φ U V

Proof

Step Hyp Ref Expression
1 4thatlem.ph φ K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A R A ¬ R ˙ W P ˙ R = Q ˙ R T A U ˙ T = V ˙ T P Q ¬ S ˙ P ˙ Q
2 4thatlem0.l ˙ = K
3 4thatlem0.j ˙ = join K
4 4thatlem0.m ˙ = meet K
5 4thatlem0.a A = Atoms K
6 4thatlem0.h H = LHyp K
7 4thatlem0.u U = P ˙ Q ˙ W
8 4thatlem0.v V = P ˙ S ˙ W
9 1 4atexlemnslpq φ ¬ S ˙ P ˙ Q
10 1 4atexlemk φ K HL
11 1 4atexlemp φ P A
12 1 4atexlems φ S A
13 2 3 5 hlatlej2 K HL P A S A S ˙ P ˙ S
14 10 11 12 13 syl3anc φ S ˙ P ˙ S
15 14 adantr φ U = V S ˙ P ˙ S
16 1 4atexlemkl φ K Lat
17 1 3 5 4atexlempsb φ P ˙ S Base K
18 1 6 4atexlemwb φ W Base K
19 eqid Base K = Base K
20 19 2 4 latmle1 K Lat P ˙ S Base K W Base K P ˙ S ˙ W ˙ P ˙ S
21 16 17 18 20 syl3anc φ P ˙ S ˙ W ˙ P ˙ S
22 8 21 eqbrtrid φ V ˙ P ˙ S
23 1 4atexlemkc φ K CvLat
24 1 2 3 4 5 6 7 8 4atexlemv φ V A
25 19 2 4 latmle2 K Lat P ˙ S Base K W Base K P ˙ S ˙ W ˙ W
26 16 17 18 25 syl3anc φ P ˙ S ˙ W ˙ W
27 8 26 eqbrtrid φ V ˙ W
28 1 4atexlempw φ P A ¬ P ˙ W
29 28 simprd φ ¬ P ˙ W
30 nbrne2 V ˙ W ¬ P ˙ W V P
31 27 29 30 syl2anc φ V P
32 2 3 5 cvlatexchb1 K CvLat V A S A P A V P V ˙ P ˙ S P ˙ V = P ˙ S
33 23 24 12 11 31 32 syl131anc φ V ˙ P ˙ S P ˙ V = P ˙ S
34 22 33 mpbid φ P ˙ V = P ˙ S
35 34 adantr φ U = V P ˙ V = P ˙ S
36 oveq2 U = V P ˙ U = P ˙ V
37 36 eqcomd U = V P ˙ V = P ˙ U
38 1 4atexlemq φ Q A
39 19 3 5 hlatjcl K HL P A Q A P ˙ Q Base K
40 10 11 38 39 syl3anc φ P ˙ Q Base K
41 19 2 4 latmle1 K Lat P ˙ Q Base K W Base K P ˙ Q ˙ W ˙ P ˙ Q
42 16 40 18 41 syl3anc φ P ˙ Q ˙ W ˙ P ˙ Q
43 7 42 eqbrtrid φ U ˙ P ˙ Q
44 1 2 3 4 5 6 7 4atexlemu φ U A
45 19 2 4 latmle2 K Lat P ˙ Q Base K W Base K P ˙ Q ˙ W ˙ W
46 16 40 18 45 syl3anc φ P ˙ Q ˙ W ˙ W
47 7 46 eqbrtrid φ U ˙ W
48 nbrne2 U ˙ W ¬ P ˙ W U P
49 47 29 48 syl2anc φ U P
50 2 3 5 cvlatexchb1 K CvLat U A Q A P A U P U ˙ P ˙ Q P ˙ U = P ˙ Q
51 23 44 38 11 49 50 syl131anc φ U ˙ P ˙ Q P ˙ U = P ˙ Q
52 43 51 mpbid φ P ˙ U = P ˙ Q
53 37 52 sylan9eqr φ U = V P ˙ V = P ˙ Q
54 35 53 eqtr3d φ U = V P ˙ S = P ˙ Q
55 15 54 breqtrd φ U = V S ˙ P ˙ Q
56 55 ex φ U = V S ˙ P ˙ Q
57 56 necon3bd φ ¬ S ˙ P ˙ Q U V
58 9 57 mpd φ U V