Step |
Hyp |
Ref |
Expression |
1 |
|
4thatlem.ph |
|
2 |
|
4thatlem0.l |
|
3 |
|
4thatlem0.j |
|
4 |
|
4thatlem0.m |
|
5 |
|
4thatlem0.a |
|
6 |
|
4thatlem0.h |
|
7 |
|
4thatlem0.u |
|
8 |
|
4thatlem0.v |
|
9 |
1
|
4atexlemnslpq |
|
10 |
1
|
4atexlemk |
|
11 |
1
|
4atexlemp |
|
12 |
1
|
4atexlems |
|
13 |
2 3 5
|
hlatlej2 |
|
14 |
10 11 12 13
|
syl3anc |
|
15 |
14
|
adantr |
|
16 |
1
|
4atexlemkl |
|
17 |
1 3 5
|
4atexlempsb |
|
18 |
1 6
|
4atexlemwb |
|
19 |
|
eqid |
|
20 |
19 2 4
|
latmle1 |
|
21 |
16 17 18 20
|
syl3anc |
|
22 |
8 21
|
eqbrtrid |
|
23 |
1
|
4atexlemkc |
|
24 |
1 2 3 4 5 6 7 8
|
4atexlemv |
|
25 |
19 2 4
|
latmle2 |
|
26 |
16 17 18 25
|
syl3anc |
|
27 |
8 26
|
eqbrtrid |
|
28 |
1
|
4atexlempw |
|
29 |
28
|
simprd |
|
30 |
|
nbrne2 |
|
31 |
27 29 30
|
syl2anc |
|
32 |
2 3 5
|
cvlatexchb1 |
|
33 |
23 24 12 11 31 32
|
syl131anc |
|
34 |
22 33
|
mpbid |
|
35 |
34
|
adantr |
|
36 |
|
oveq2 |
|
37 |
36
|
eqcomd |
|
38 |
1
|
4atexlemq |
|
39 |
19 3 5
|
hlatjcl |
|
40 |
10 11 38 39
|
syl3anc |
|
41 |
19 2 4
|
latmle1 |
|
42 |
16 40 18 41
|
syl3anc |
|
43 |
7 42
|
eqbrtrid |
|
44 |
1 2 3 4 5 6 7
|
4atexlemu |
|
45 |
19 2 4
|
latmle2 |
|
46 |
16 40 18 45
|
syl3anc |
|
47 |
7 46
|
eqbrtrid |
|
48 |
|
nbrne2 |
|
49 |
47 29 48
|
syl2anc |
|
50 |
2 3 5
|
cvlatexchb1 |
|
51 |
23 44 38 11 49 50
|
syl131anc |
|
52 |
43 51
|
mpbid |
|
53 |
37 52
|
sylan9eqr |
|
54 |
35 53
|
eqtr3d |
|
55 |
15 54
|
breqtrd |
|
56 |
55
|
ex |
|
57 |
56
|
necon3bd |
|
58 |
9 57
|
mpd |
|