Metamath Proof Explorer


Theorem 4atexlemwb

Description: Lemma for 4atexlem7 . (Contributed by NM, 23-Nov-2012)

Ref Expression
Hypotheses 4thatlem.ph φ K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A R A ¬ R ˙ W P ˙ R = Q ˙ R T A U ˙ T = V ˙ T P Q ¬ S ˙ P ˙ Q
4thatlemmwb.h H = LHyp K
Assertion 4atexlemwb φ W Base K

Proof

Step Hyp Ref Expression
1 4thatlem.ph φ K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A R A ¬ R ˙ W P ˙ R = Q ˙ R T A U ˙ T = V ˙ T P Q ¬ S ˙ P ˙ Q
2 4thatlemmwb.h H = LHyp K
3 1 4atexlemw φ W H
4 eqid Base K = Base K
5 4 2 lhpbase W H W Base K
6 3 5 syl φ W Base K