Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Projective geometries based on Hilbert lattices
4atlem0a
Next ⟩
4atlem0ae
Metamath Proof Explorer
Ascii
Unicode
Theorem
4atlem0a
Description:
Lemma for
4at
.
(Contributed by
NM
, 10-Jul-2012)
Ref
Expression
Hypotheses
4at.l
⊢
≤
˙
=
≤
K
4at.j
⊢
∨
˙
=
join
⁡
K
4at.a
⊢
A
=
Atoms
⁡
K
Assertion
4atlem0a
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
S
∈
A
∧
¬
R
≤
˙
P
∨
˙
Q
∧
¬
S
≤
˙
P
∨
˙
Q
∨
˙
R
→
¬
R
≤
˙
P
∨
˙
Q
∨
˙
S
Proof
Step
Hyp
Ref
Expression
1
4at.l
⊢
≤
˙
=
≤
K
2
4at.j
⊢
∨
˙
=
join
⁡
K
3
4at.a
⊢
A
=
Atoms
⁡
K
4
simprr
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
S
∈
A
∧
¬
R
≤
˙
P
∨
˙
Q
∧
¬
S
≤
˙
P
∨
˙
Q
∨
˙
R
→
¬
S
≤
˙
P
∨
˙
Q
∨
˙
R
5
simpl1
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
S
∈
A
∧
¬
R
≤
˙
P
∨
˙
Q
∧
¬
S
≤
˙
P
∨
˙
Q
∨
˙
R
→
K
∈
HL
6
simpl3l
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
S
∈
A
∧
¬
R
≤
˙
P
∨
˙
Q
∧
¬
S
≤
˙
P
∨
˙
Q
∨
˙
R
→
R
∈
A
7
simpl3r
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
S
∈
A
∧
¬
R
≤
˙
P
∨
˙
Q
∧
¬
S
≤
˙
P
∨
˙
Q
∨
˙
R
→
S
∈
A
8
simpl2l
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
S
∈
A
∧
¬
R
≤
˙
P
∨
˙
Q
∧
¬
S
≤
˙
P
∨
˙
Q
∨
˙
R
→
P
∈
A
9
simpl2r
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
S
∈
A
∧
¬
R
≤
˙
P
∨
˙
Q
∧
¬
S
≤
˙
P
∨
˙
Q
∨
˙
R
→
Q
∈
A
10
eqid
⊢
Base
K
=
Base
K
11
10
2
3
hlatjcl
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
→
P
∨
˙
Q
∈
Base
K
12
5
8
9
11
syl3anc
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
S
∈
A
∧
¬
R
≤
˙
P
∨
˙
Q
∧
¬
S
≤
˙
P
∨
˙
Q
∨
˙
R
→
P
∨
˙
Q
∈
Base
K
13
simprl
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
S
∈
A
∧
¬
R
≤
˙
P
∨
˙
Q
∧
¬
S
≤
˙
P
∨
˙
Q
∨
˙
R
→
¬
R
≤
˙
P
∨
˙
Q
14
10
1
2
3
hlexch1
⊢
K
∈
HL
∧
R
∈
A
∧
S
∈
A
∧
P
∨
˙
Q
∈
Base
K
∧
¬
R
≤
˙
P
∨
˙
Q
→
R
≤
˙
P
∨
˙
Q
∨
˙
S
→
S
≤
˙
P
∨
˙
Q
∨
˙
R
15
5
6
7
12
13
14
syl131anc
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
S
∈
A
∧
¬
R
≤
˙
P
∨
˙
Q
∧
¬
S
≤
˙
P
∨
˙
Q
∨
˙
R
→
R
≤
˙
P
∨
˙
Q
∨
˙
S
→
S
≤
˙
P
∨
˙
Q
∨
˙
R
16
4
15
mtod
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
S
∈
A
∧
¬
R
≤
˙
P
∨
˙
Q
∧
¬
S
≤
˙
P
∨
˙
Q
∨
˙
R
→
¬
R
≤
˙
P
∨
˙
Q
∨
˙
S