Metamath Proof Explorer


Theorem 4atlem0ae

Description: Lemma for 4at . (Contributed by NM, 10-Jul-2012)

Ref Expression
Hypotheses 4at.l ˙ = K
4at.j ˙ = join K
4at.a A = Atoms K
Assertion 4atlem0ae K HL P A Q A R A P Q ¬ R ˙ P ˙ Q ¬ Q ˙ P ˙ R

Proof

Step Hyp Ref Expression
1 4at.l ˙ = K
2 4at.j ˙ = join K
3 4at.a A = Atoms K
4 simp3r K HL P A Q A R A P Q ¬ R ˙ P ˙ Q ¬ R ˙ P ˙ Q
5 simp1 K HL P A Q A R A P Q ¬ R ˙ P ˙ Q K HL
6 simp22 K HL P A Q A R A P Q ¬ R ˙ P ˙ Q Q A
7 simp23 K HL P A Q A R A P Q ¬ R ˙ P ˙ Q R A
8 simp21 K HL P A Q A R A P Q ¬ R ˙ P ˙ Q P A
9 simp3l K HL P A Q A R A P Q ¬ R ˙ P ˙ Q P Q
10 9 necomd K HL P A Q A R A P Q ¬ R ˙ P ˙ Q Q P
11 1 2 3 hlatexch1 K HL Q A R A P A Q P Q ˙ P ˙ R R ˙ P ˙ Q
12 5 6 7 8 10 11 syl131anc K HL P A Q A R A P Q ¬ R ˙ P ˙ Q Q ˙ P ˙ R R ˙ P ˙ Q
13 4 12 mtod K HL P A Q A R A P Q ¬ R ˙ P ˙ Q ¬ Q ˙ P ˙ R