Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Projective geometries based on Hilbert lattices
4atlem0ae
Next ⟩
4atlem0be
Metamath Proof Explorer
Ascii
Unicode
Theorem
4atlem0ae
Description:
Lemma for
4at
.
(Contributed by
NM
, 10-Jul-2012)
Ref
Expression
Hypotheses
4at.l
⊢
≤
˙
=
≤
K
4at.j
⊢
∨
˙
=
join
⁡
K
4at.a
⊢
A
=
Atoms
⁡
K
Assertion
4atlem0ae
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
→
¬
Q
≤
˙
P
∨
˙
R
Proof
Step
Hyp
Ref
Expression
1
4at.l
⊢
≤
˙
=
≤
K
2
4at.j
⊢
∨
˙
=
join
⁡
K
3
4at.a
⊢
A
=
Atoms
⁡
K
4
simp3r
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
→
¬
R
≤
˙
P
∨
˙
Q
5
simp1
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
→
K
∈
HL
6
simp22
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
→
Q
∈
A
7
simp23
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
→
R
∈
A
8
simp21
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
→
P
∈
A
9
simp3l
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
→
P
≠
Q
10
9
necomd
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
→
Q
≠
P
11
1
2
3
hlatexch1
⊢
K
∈
HL
∧
Q
∈
A
∧
R
∈
A
∧
P
∈
A
∧
Q
≠
P
→
Q
≤
˙
P
∨
˙
R
→
R
≤
˙
P
∨
˙
Q
12
5
6
7
8
10
11
syl131anc
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
→
Q
≤
˙
P
∨
˙
R
→
R
≤
˙
P
∨
˙
Q
13
4
12
mtod
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
→
¬
Q
≤
˙
P
∨
˙
R