Metamath Proof Explorer


Theorem 4atlem0be

Description: Lemma for 4at . (Contributed by NM, 10-Jul-2012)

Ref Expression
Hypotheses 4at.l ˙ = K
4at.j ˙ = join K
4at.a A = Atoms K
Assertion 4atlem0be K HL P A Q A R A ¬ R ˙ P ˙ Q P R

Proof

Step Hyp Ref Expression
1 4at.l ˙ = K
2 4at.j ˙ = join K
3 4at.a A = Atoms K
4 simp1 K HL P A Q A R A ¬ R ˙ P ˙ Q K HL
5 simp23 K HL P A Q A R A ¬ R ˙ P ˙ Q R A
6 simp21 K HL P A Q A R A ¬ R ˙ P ˙ Q P A
7 simp22 K HL P A Q A R A ¬ R ˙ P ˙ Q Q A
8 simp3 K HL P A Q A R A ¬ R ˙ P ˙ Q ¬ R ˙ P ˙ Q
9 1 2 3 atnlej1 K HL R A P A Q A ¬ R ˙ P ˙ Q R P
10 9 necomd K HL R A P A Q A ¬ R ˙ P ˙ Q P R
11 4 5 6 7 8 10 syl131anc K HL P A Q A R A ¬ R ˙ P ˙ Q P R