Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Projective geometries based on Hilbert lattices
4atlem0be
Next ⟩
4atlem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
4atlem0be
Description:
Lemma for
4at
.
(Contributed by
NM
, 10-Jul-2012)
Ref
Expression
Hypotheses
4at.l
⊢
≤
˙
=
≤
K
4at.j
⊢
∨
˙
=
join
⁡
K
4at.a
⊢
A
=
Atoms
⁡
K
Assertion
4atlem0be
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
¬
R
≤
˙
P
∨
˙
Q
→
P
≠
R
Proof
Step
Hyp
Ref
Expression
1
4at.l
⊢
≤
˙
=
≤
K
2
4at.j
⊢
∨
˙
=
join
⁡
K
3
4at.a
⊢
A
=
Atoms
⁡
K
4
simp1
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
¬
R
≤
˙
P
∨
˙
Q
→
K
∈
HL
5
simp23
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
¬
R
≤
˙
P
∨
˙
Q
→
R
∈
A
6
simp21
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
¬
R
≤
˙
P
∨
˙
Q
→
P
∈
A
7
simp22
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
¬
R
≤
˙
P
∨
˙
Q
→
Q
∈
A
8
simp3
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
¬
R
≤
˙
P
∨
˙
Q
→
¬
R
≤
˙
P
∨
˙
Q
9
1
2
3
atnlej1
⊢
K
∈
HL
∧
R
∈
A
∧
P
∈
A
∧
Q
∈
A
∧
¬
R
≤
˙
P
∨
˙
Q
→
R
≠
P
10
9
necomd
⊢
K
∈
HL
∧
R
∈
A
∧
P
∈
A
∧
Q
∈
A
∧
¬
R
≤
˙
P
∨
˙
Q
→
P
≠
R
11
4
5
6
7
8
10
syl131anc
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
¬
R
≤
˙
P
∨
˙
Q
→
P
≠
R