Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Projective geometries based on Hilbert lattices
4atlem4c
Next ⟩
4atlem4d
Metamath Proof Explorer
Ascii
Unicode
Theorem
4atlem4c
Description:
Lemma for
4at
. Frequently used associative law.
(Contributed by
NM
, 9-Jul-2012)
Ref
Expression
Hypotheses
4at.l
⊢
≤
˙
=
≤
K
4at.j
⊢
∨
˙
=
join
⁡
K
4at.a
⊢
A
=
Atoms
⁡
K
Assertion
4atlem4c
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
S
∈
A
→
P
∨
˙
Q
∨
˙
R
∨
˙
S
=
R
∨
˙
P
∨
˙
Q
∨
˙
S
Proof
Step
Hyp
Ref
Expression
1
4at.l
⊢
≤
˙
=
≤
K
2
4at.j
⊢
∨
˙
=
join
⁡
K
3
4at.a
⊢
A
=
Atoms
⁡
K
4
simpl1
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
S
∈
A
→
K
∈
HL
5
4
hllatd
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
S
∈
A
→
K
∈
Lat
6
eqid
⊢
Base
K
=
Base
K
7
6
2
3
hlatjcl
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
→
P
∨
˙
Q
∈
Base
K
8
7
adantr
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
S
∈
A
→
P
∨
˙
Q
∈
Base
K
9
6
3
atbase
⊢
R
∈
A
→
R
∈
Base
K
10
9
ad2antrl
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
S
∈
A
→
R
∈
Base
K
11
6
3
atbase
⊢
S
∈
A
→
S
∈
Base
K
12
11
ad2antll
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
S
∈
A
→
S
∈
Base
K
13
6
2
latj12
⊢
K
∈
Lat
∧
P
∨
˙
Q
∈
Base
K
∧
R
∈
Base
K
∧
S
∈
Base
K
→
P
∨
˙
Q
∨
˙
R
∨
˙
S
=
R
∨
˙
P
∨
˙
Q
∨
˙
S
14
5
8
10
12
13
syl13anc
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
∧
R
∈
A
∧
S
∈
A
→
P
∨
˙
Q
∨
˙
R
∨
˙
S
=
R
∨
˙
P
∨
˙
Q
∨
˙
S