Metamath Proof Explorer


Theorem 4atlem4c

Description: Lemma for 4at . Frequently used associative law. (Contributed by NM, 9-Jul-2012)

Ref Expression
Hypotheses 4at.l ˙ = K
4at.j ˙ = join K
4at.a A = Atoms K
Assertion 4atlem4c K HL P A Q A R A S A P ˙ Q ˙ R ˙ S = R ˙ P ˙ Q ˙ S

Proof

Step Hyp Ref Expression
1 4at.l ˙ = K
2 4at.j ˙ = join K
3 4at.a A = Atoms K
4 simpl1 K HL P A Q A R A S A K HL
5 4 hllatd K HL P A Q A R A S A K Lat
6 eqid Base K = Base K
7 6 2 3 hlatjcl K HL P A Q A P ˙ Q Base K
8 7 adantr K HL P A Q A R A S A P ˙ Q Base K
9 6 3 atbase R A R Base K
10 9 ad2antrl K HL P A Q A R A S A R Base K
11 6 3 atbase S A S Base K
12 11 ad2antll K HL P A Q A R A S A S Base K
13 6 2 latj12 K Lat P ˙ Q Base K R Base K S Base K P ˙ Q ˙ R ˙ S = R ˙ P ˙ Q ˙ S
14 5 8 10 12 13 syl13anc K HL P A Q A R A S A P ˙ Q ˙ R ˙ S = R ˙ P ˙ Q ˙ S