Metamath Proof Explorer


Theorem 4atlem9

Description: Lemma for 4at . Substitute W for S . (Contributed by NM, 9-Jul-2012)

Ref Expression
Hypotheses 4at.l ˙ = K
4at.j ˙ = join K
4at.a A = Atoms K
Assertion 4atlem9 K HL P A Q A R A S A W A ¬ S ˙ P ˙ Q ˙ R S ˙ P ˙ Q ˙ R ˙ W P ˙ Q ˙ R ˙ S = P ˙ Q ˙ R ˙ W

Proof

Step Hyp Ref Expression
1 4at.l ˙ = K
2 4at.j ˙ = join K
3 4at.a A = Atoms K
4 simp11 K HL P A Q A R A S A W A ¬ S ˙ P ˙ Q ˙ R K HL
5 simp22 K HL P A Q A R A S A W A ¬ S ˙ P ˙ Q ˙ R S A
6 simp23 K HL P A Q A R A S A W A ¬ S ˙ P ˙ Q ˙ R W A
7 4 hllatd K HL P A Q A R A S A W A ¬ S ˙ P ˙ Q ˙ R K Lat
8 simp1 K HL P A Q A R A S A W A ¬ S ˙ P ˙ Q ˙ R K HL P A Q A
9 eqid Base K = Base K
10 9 2 3 hlatjcl K HL P A Q A P ˙ Q Base K
11 8 10 syl K HL P A Q A R A S A W A ¬ S ˙ P ˙ Q ˙ R P ˙ Q Base K
12 simp21 K HL P A Q A R A S A W A ¬ S ˙ P ˙ Q ˙ R R A
13 9 3 atbase R A R Base K
14 12 13 syl K HL P A Q A R A S A W A ¬ S ˙ P ˙ Q ˙ R R Base K
15 9 2 latjcl K Lat P ˙ Q Base K R Base K P ˙ Q ˙ R Base K
16 7 11 14 15 syl3anc K HL P A Q A R A S A W A ¬ S ˙ P ˙ Q ˙ R P ˙ Q ˙ R Base K
17 simp3 K HL P A Q A R A S A W A ¬ S ˙ P ˙ Q ˙ R ¬ S ˙ P ˙ Q ˙ R
18 9 1 2 3 hlexchb2 K HL S A W A P ˙ Q ˙ R Base K ¬ S ˙ P ˙ Q ˙ R S ˙ W ˙ P ˙ Q ˙ R S ˙ P ˙ Q ˙ R = W ˙ P ˙ Q ˙ R
19 4 5 6 16 17 18 syl131anc K HL P A Q A R A S A W A ¬ S ˙ P ˙ Q ˙ R S ˙ W ˙ P ˙ Q ˙ R S ˙ P ˙ Q ˙ R = W ˙ P ˙ Q ˙ R
20 1 2 3 4atlem4d K HL P A Q A R A W A P ˙ Q ˙ R ˙ W = W ˙ P ˙ Q ˙ R
21 8 12 6 20 syl12anc K HL P A Q A R A S A W A ¬ S ˙ P ˙ Q ˙ R P ˙ Q ˙ R ˙ W = W ˙ P ˙ Q ˙ R
22 21 breq2d K HL P A Q A R A S A W A ¬ S ˙ P ˙ Q ˙ R S ˙ P ˙ Q ˙ R ˙ W S ˙ W ˙ P ˙ Q ˙ R
23 1 2 3 4atlem4d K HL P A Q A R A S A P ˙ Q ˙ R ˙ S = S ˙ P ˙ Q ˙ R
24 8 12 5 23 syl12anc K HL P A Q A R A S A W A ¬ S ˙ P ˙ Q ˙ R P ˙ Q ˙ R ˙ S = S ˙ P ˙ Q ˙ R
25 24 21 eqeq12d K HL P A Q A R A S A W A ¬ S ˙ P ˙ Q ˙ R P ˙ Q ˙ R ˙ S = P ˙ Q ˙ R ˙ W S ˙ P ˙ Q ˙ R = W ˙ P ˙ Q ˙ R
26 19 22 25 3bitr4d K HL P A Q A R A S A W A ¬ S ˙ P ˙ Q ˙ R S ˙ P ˙ Q ˙ R ˙ W P ˙ Q ˙ R ˙ S = P ˙ Q ˙ R ˙ W