Metamath Proof Explorer


Theorem 4bc2eq6

Description: The value of four choose two. (Contributed by Scott Fenton, 9-Jan-2017)

Ref Expression
Assertion 4bc2eq6 ( 4 2 ) = 6

Proof

Step Hyp Ref Expression
1 0z 0
2 4z 4
3 2z 2
4 1 2 3 3pm3.2i 0 4 2
5 0le2 0 2
6 2re 2
7 4re 4
8 2lt4 2 < 4
9 6 7 8 ltleii 2 4
10 5 9 pm3.2i 0 2 2 4
11 elfz4 0 4 2 0 2 2 4 2 0 4
12 4 10 11 mp2an 2 0 4
13 bcval2 2 0 4 ( 4 2 ) = 4 ! 4 2 ! 2 !
14 12 13 ax-mp ( 4 2 ) = 4 ! 4 2 ! 2 !
15 3nn0 3 0
16 facp1 3 0 3 + 1 ! = 3 ! 3 + 1
17 15 16 ax-mp 3 + 1 ! = 3 ! 3 + 1
18 df-4 4 = 3 + 1
19 18 fveq2i 4 ! = 3 + 1 !
20 18 oveq2i 3 ! 4 = 3 ! 3 + 1
21 17 19 20 3eqtr4i 4 ! = 3 ! 4
22 4cn 4
23 2cn 2
24 2p2e4 2 + 2 = 4
25 22 23 23 24 subaddrii 4 2 = 2
26 25 fveq2i 4 2 ! = 2 !
27 fac2 2 ! = 2
28 26 27 eqtri 4 2 ! = 2
29 28 27 oveq12i 4 2 ! 2 ! = 2 2
30 2t2e4 2 2 = 4
31 29 30 eqtri 4 2 ! 2 ! = 4
32 21 31 oveq12i 4 ! 4 2 ! 2 ! = 3 ! 4 4
33 faccl 3 0 3 !
34 15 33 ax-mp 3 !
35 34 nncni 3 !
36 4ne0 4 0
37 35 22 36 divcan4i 3 ! 4 4 = 3 !
38 fac3 3 ! = 6
39 37 38 eqtri 3 ! 4 4 = 6
40 32 39 eqtri 4 ! 4 2 ! 2 ! = 6
41 14 40 eqtri ( 4 2 ) = 6