Metamath Proof Explorer


Theorem 4casesdan

Description: Deduction eliminating two antecedents from the four possible cases that result from their true/false combinations. (Contributed by NM, 19-Mar-2013)

Ref Expression
Hypotheses 4casesdan.1 φ ψ χ θ
4casesdan.2 φ ψ ¬ χ θ
4casesdan.3 φ ¬ ψ χ θ
4casesdan.4 φ ¬ ψ ¬ χ θ
Assertion 4casesdan φ θ

Proof

Step Hyp Ref Expression
1 4casesdan.1 φ ψ χ θ
2 4casesdan.2 φ ψ ¬ χ θ
3 4casesdan.3 φ ¬ ψ χ θ
4 4casesdan.4 φ ¬ ψ ¬ χ θ
5 1 expcom ψ χ φ θ
6 2 expcom ψ ¬ χ φ θ
7 3 expcom ¬ ψ χ φ θ
8 4 expcom ¬ ψ ¬ χ φ θ
9 5 6 7 8 4cases φ θ