Step |
Hyp |
Ref |
Expression |
1 |
|
cphipfval.x |
|
2 |
|
cphipfval.p |
|
3 |
|
cphipfval.s |
|
4 |
|
cphipfval.n |
|
5 |
|
cphipfval.i |
|
6 |
|
cphipval2.m |
|
7 |
|
cphipval2.f |
|
8 |
|
cphipval2.k |
|
9 |
1 2 3 4 5 6 7 8
|
cphipval2 |
|
10 |
9
|
oveq2d |
|
11 |
7 8
|
cphsubrg |
|
12 |
|
cnfldbas |
|
13 |
12
|
subrgss |
|
14 |
11 13
|
syl |
|
15 |
14
|
adantr |
|
16 |
15
|
3ad2ant1 |
|
17 |
|
simp1l |
|
18 |
|
cphngp |
|
19 |
|
ngpgrp |
|
20 |
18 19
|
syl |
|
21 |
20
|
adantr |
|
22 |
1 2
|
grpcl |
|
23 |
21 22
|
syl3an1 |
|
24 |
1 5 4 7 8
|
cphnmcl |
|
25 |
17 23 24
|
syl2anc |
|
26 |
16 25
|
sseldd |
|
27 |
26
|
sqcld |
|
28 |
1 6
|
grpsubcl |
|
29 |
21 28
|
syl3an1 |
|
30 |
1 5 4 7 8
|
cphnmcl |
|
31 |
17 29 30
|
syl2anc |
|
32 |
16 31
|
sseldd |
|
33 |
32
|
sqcld |
|
34 |
27 33
|
subcld |
|
35 |
|
ax-icn |
|
36 |
35
|
a1i |
|
37 |
17 20
|
syl |
|
38 |
|
simp2 |
|
39 |
|
cphlmod |
|
40 |
39
|
adantr |
|
41 |
40
|
3ad2ant1 |
|
42 |
|
simp1r |
|
43 |
|
simp3 |
|
44 |
1 7 3 8
|
lmodvscl |
|
45 |
41 42 43 44
|
syl3anc |
|
46 |
1 2
|
grpcl |
|
47 |
37 38 45 46
|
syl3anc |
|
48 |
1 5 4 7 8
|
cphnmcl |
|
49 |
17 47 48
|
syl2anc |
|
50 |
16 49
|
sseldd |
|
51 |
50
|
sqcld |
|
52 |
1 6
|
grpsubcl |
|
53 |
37 38 45 52
|
syl3anc |
|
54 |
1 5 4 7 8
|
cphnmcl |
|
55 |
17 53 54
|
syl2anc |
|
56 |
16 55
|
sseldd |
|
57 |
56
|
sqcld |
|
58 |
51 57
|
subcld |
|
59 |
36 58
|
mulcld |
|
60 |
34 59
|
addcld |
|
61 |
|
4cn |
|
62 |
61
|
a1i |
|
63 |
|
4ne0 |
|
64 |
63
|
a1i |
|
65 |
60 62 64
|
divcan2d |
|
66 |
10 65
|
eqtrd |
|