Metamath Proof Explorer


Theorem 4cphipval2

Description: Four times the inner product value cphipval2 . (Contributed by NM, 1-Feb-2008) (Revised by AV, 18-Oct-2021)

Ref Expression
Hypotheses cphipfval.x X = Base W
cphipfval.p + ˙ = + W
cphipfval.s · ˙ = W
cphipfval.n N = norm W
cphipfval.i , ˙ = 𝑖 W
cphipval2.m - ˙ = - W
cphipval2.f F = Scalar W
cphipval2.k K = Base F
Assertion 4cphipval2 W CPreHil i K A X B X 4 A , ˙ B = N A + ˙ B 2 - N A - ˙ B 2 + i N A + ˙ i · ˙ B 2 N A - ˙ i · ˙ B 2

Proof

Step Hyp Ref Expression
1 cphipfval.x X = Base W
2 cphipfval.p + ˙ = + W
3 cphipfval.s · ˙ = W
4 cphipfval.n N = norm W
5 cphipfval.i , ˙ = 𝑖 W
6 cphipval2.m - ˙ = - W
7 cphipval2.f F = Scalar W
8 cphipval2.k K = Base F
9 1 2 3 4 5 6 7 8 cphipval2 W CPreHil i K A X B X A , ˙ B = N A + ˙ B 2 - N A - ˙ B 2 + i N A + ˙ i · ˙ B 2 N A - ˙ i · ˙ B 2 4
10 9 oveq2d W CPreHil i K A X B X 4 A , ˙ B = 4 N A + ˙ B 2 - N A - ˙ B 2 + i N A + ˙ i · ˙ B 2 N A - ˙ i · ˙ B 2 4
11 7 8 cphsubrg W CPreHil K SubRing fld
12 cnfldbas = Base fld
13 12 subrgss K SubRing fld K
14 11 13 syl W CPreHil K
15 14 adantr W CPreHil i K K
16 15 3ad2ant1 W CPreHil i K A X B X K
17 simp1l W CPreHil i K A X B X W CPreHil
18 cphngp W CPreHil W NrmGrp
19 ngpgrp W NrmGrp W Grp
20 18 19 syl W CPreHil W Grp
21 20 adantr W CPreHil i K W Grp
22 1 2 grpcl W Grp A X B X A + ˙ B X
23 21 22 syl3an1 W CPreHil i K A X B X A + ˙ B X
24 1 5 4 7 8 cphnmcl W CPreHil A + ˙ B X N A + ˙ B K
25 17 23 24 syl2anc W CPreHil i K A X B X N A + ˙ B K
26 16 25 sseldd W CPreHil i K A X B X N A + ˙ B
27 26 sqcld W CPreHil i K A X B X N A + ˙ B 2
28 1 6 grpsubcl W Grp A X B X A - ˙ B X
29 21 28 syl3an1 W CPreHil i K A X B X A - ˙ B X
30 1 5 4 7 8 cphnmcl W CPreHil A - ˙ B X N A - ˙ B K
31 17 29 30 syl2anc W CPreHil i K A X B X N A - ˙ B K
32 16 31 sseldd W CPreHil i K A X B X N A - ˙ B
33 32 sqcld W CPreHil i K A X B X N A - ˙ B 2
34 27 33 subcld W CPreHil i K A X B X N A + ˙ B 2 N A - ˙ B 2
35 ax-icn i
36 35 a1i W CPreHil i K A X B X i
37 17 20 syl W CPreHil i K A X B X W Grp
38 simp2 W CPreHil i K A X B X A X
39 cphlmod W CPreHil W LMod
40 39 adantr W CPreHil i K W LMod
41 40 3ad2ant1 W CPreHil i K A X B X W LMod
42 simp1r W CPreHil i K A X B X i K
43 simp3 W CPreHil i K A X B X B X
44 1 7 3 8 lmodvscl W LMod i K B X i · ˙ B X
45 41 42 43 44 syl3anc W CPreHil i K A X B X i · ˙ B X
46 1 2 grpcl W Grp A X i · ˙ B X A + ˙ i · ˙ B X
47 37 38 45 46 syl3anc W CPreHil i K A X B X A + ˙ i · ˙ B X
48 1 5 4 7 8 cphnmcl W CPreHil A + ˙ i · ˙ B X N A + ˙ i · ˙ B K
49 17 47 48 syl2anc W CPreHil i K A X B X N A + ˙ i · ˙ B K
50 16 49 sseldd W CPreHil i K A X B X N A + ˙ i · ˙ B
51 50 sqcld W CPreHil i K A X B X N A + ˙ i · ˙ B 2
52 1 6 grpsubcl W Grp A X i · ˙ B X A - ˙ i · ˙ B X
53 37 38 45 52 syl3anc W CPreHil i K A X B X A - ˙ i · ˙ B X
54 1 5 4 7 8 cphnmcl W CPreHil A - ˙ i · ˙ B X N A - ˙ i · ˙ B K
55 17 53 54 syl2anc W CPreHil i K A X B X N A - ˙ i · ˙ B K
56 16 55 sseldd W CPreHil i K A X B X N A - ˙ i · ˙ B
57 56 sqcld W CPreHil i K A X B X N A - ˙ i · ˙ B 2
58 51 57 subcld W CPreHil i K A X B X N A + ˙ i · ˙ B 2 N A - ˙ i · ˙ B 2
59 36 58 mulcld W CPreHil i K A X B X i N A + ˙ i · ˙ B 2 N A - ˙ i · ˙ B 2
60 34 59 addcld W CPreHil i K A X B X N A + ˙ B 2 - N A - ˙ B 2 + i N A + ˙ i · ˙ B 2 N A - ˙ i · ˙ B 2
61 4cn 4
62 61 a1i W CPreHil i K A X B X 4
63 4ne0 4 0
64 63 a1i W CPreHil i K A X B X 4 0
65 60 62 64 divcan2d W CPreHil i K A X B X 4 N A + ˙ B 2 - N A - ˙ B 2 + i N A + ˙ i · ˙ B 2 N A - ˙ i · ˙ B 2 4 = N A + ˙ B 2 - N A - ˙ B 2 + i N A + ˙ i · ˙ B 2 N A - ˙ i · ˙ B 2
66 10 65 eqtrd W CPreHil i K A X B X 4 A , ˙ B = N A + ˙ B 2 - N A - ˙ B 2 + i N A + ˙ i · ˙ B 2 N A - ˙ i · ˙ B 2