Step |
Hyp |
Ref |
Expression |
1 |
|
4cycl2v2nb |
|
2 |
|
preq2 |
|
3 |
|
preq1 |
|
4 |
2 3
|
preq12d |
|
5 |
4
|
sseq1d |
|
6 |
5
|
anbi1d |
|
7 |
|
neeq1 |
|
8 |
6 7
|
anbi12d |
|
9 |
|
preq2 |
|
10 |
|
preq1 |
|
11 |
9 10
|
preq12d |
|
12 |
11
|
sseq1d |
|
13 |
12
|
anbi2d |
|
14 |
|
neeq2 |
|
15 |
13 14
|
anbi12d |
|
16 |
8 15
|
rspc2ev |
|
17 |
16
|
3expa |
|
18 |
17
|
expcom |
|
19 |
18
|
ex |
|
20 |
19
|
com13 |
|
21 |
20
|
3impia |
|
22 |
21
|
impcom |
|
23 |
|
rexnal |
|
24 |
|
rexnal |
|
25 |
|
annim |
|
26 |
|
df-ne |
|
27 |
26
|
bicomi |
|
28 |
27
|
anbi2i |
|
29 |
25 28
|
bitr3i |
|
30 |
29
|
rexbii |
|
31 |
24 30
|
bitr3i |
|
32 |
31
|
rexbii |
|
33 |
23 32
|
bitr3i |
|
34 |
22 33
|
sylibr |
|
35 |
34
|
intnand |
|
36 |
|
preq2 |
|
37 |
|
preq1 |
|
38 |
36 37
|
preq12d |
|
39 |
38
|
sseq1d |
|
40 |
39
|
reu4 |
|
41 |
35 40
|
sylnibr |
|
42 |
1 41
|
stoic3 |
|