Metamath Proof Explorer


Theorem 4ipval2

Description: Four times the inner product value ipval3 , useful for simplifying certain proofs. (Contributed by NM, 10-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses dipfval.1 X = BaseSet U
dipfval.2 G = + v U
dipfval.4 S = 𝑠OLD U
dipfval.6 N = norm CV U
dipfval.7 P = 𝑖OLD U
Assertion 4ipval2 U NrmCVec A X B X 4 A P B = N A G B 2 - N A G -1 S B 2 + i N A G i S B 2 N A G i S B 2

Proof

Step Hyp Ref Expression
1 dipfval.1 X = BaseSet U
2 dipfval.2 G = + v U
3 dipfval.4 S = 𝑠OLD U
4 dipfval.6 N = norm CV U
5 dipfval.7 P = 𝑖OLD U
6 1 2 3 4 5 ipval2 U NrmCVec A X B X A P B = N A G B 2 - N A G -1 S B 2 + i N A G i S B 2 N A G i S B 2 4
7 6 oveq2d U NrmCVec A X B X 4 A P B = 4 N A G B 2 - N A G -1 S B 2 + i N A G i S B 2 N A G i S B 2 4
8 simp1 U NrmCVec A X B X U NrmCVec
9 1 2 nvgcl U NrmCVec A X B X A G B X
10 1 4 nvcl U NrmCVec A G B X N A G B
11 8 9 10 syl2anc U NrmCVec A X B X N A G B
12 11 recnd U NrmCVec A X B X N A G B
13 12 sqcld U NrmCVec A X B X N A G B 2
14 neg1cn 1
15 1 3 nvscl U NrmCVec 1 B X -1 S B X
16 14 15 mp3an2 U NrmCVec B X -1 S B X
17 16 3adant2 U NrmCVec A X B X -1 S B X
18 1 2 nvgcl U NrmCVec A X -1 S B X A G -1 S B X
19 17 18 syld3an3 U NrmCVec A X B X A G -1 S B X
20 1 4 nvcl U NrmCVec A G -1 S B X N A G -1 S B
21 8 19 20 syl2anc U NrmCVec A X B X N A G -1 S B
22 21 recnd U NrmCVec A X B X N A G -1 S B
23 22 sqcld U NrmCVec A X B X N A G -1 S B 2
24 13 23 subcld U NrmCVec A X B X N A G B 2 N A G -1 S B 2
25 ax-icn i
26 1 3 nvscl U NrmCVec i B X i S B X
27 25 26 mp3an2 U NrmCVec B X i S B X
28 27 3adant2 U NrmCVec A X B X i S B X
29 1 2 nvgcl U NrmCVec A X i S B X A G i S B X
30 28 29 syld3an3 U NrmCVec A X B X A G i S B X
31 1 4 nvcl U NrmCVec A G i S B X N A G i S B
32 8 30 31 syl2anc U NrmCVec A X B X N A G i S B
33 32 recnd U NrmCVec A X B X N A G i S B
34 33 sqcld U NrmCVec A X B X N A G i S B 2
35 negicn i
36 1 3 nvscl U NrmCVec i B X i S B X
37 35 36 mp3an2 U NrmCVec B X i S B X
38 37 3adant2 U NrmCVec A X B X i S B X
39 1 2 nvgcl U NrmCVec A X i S B X A G i S B X
40 38 39 syld3an3 U NrmCVec A X B X A G i S B X
41 1 4 nvcl U NrmCVec A G i S B X N A G i S B
42 8 40 41 syl2anc U NrmCVec A X B X N A G i S B
43 42 recnd U NrmCVec A X B X N A G i S B
44 43 sqcld U NrmCVec A X B X N A G i S B 2
45 34 44 subcld U NrmCVec A X B X N A G i S B 2 N A G i S B 2
46 mulcl i N A G i S B 2 N A G i S B 2 i N A G i S B 2 N A G i S B 2
47 25 45 46 sylancr U NrmCVec A X B X i N A G i S B 2 N A G i S B 2
48 24 47 addcld U NrmCVec A X B X N A G B 2 - N A G -1 S B 2 + i N A G i S B 2 N A G i S B 2
49 4cn 4
50 4ne0 4 0
51 divcan2 N A G B 2 - N A G -1 S B 2 + i N A G i S B 2 N A G i S B 2 4 4 0 4 N A G B 2 - N A G -1 S B 2 + i N A G i S B 2 N A G i S B 2 4 = N A G B 2 - N A G -1 S B 2 + i N A G i S B 2 N A G i S B 2
52 49 50 51 mp3an23 N A G B 2 - N A G -1 S B 2 + i N A G i S B 2 N A G i S B 2 4 N A G B 2 - N A G -1 S B 2 + i N A G i S B 2 N A G i S B 2 4 = N A G B 2 - N A G -1 S B 2 + i N A G i S B 2 N A G i S B 2
53 48 52 syl U NrmCVec A X B X 4 N A G B 2 - N A G -1 S B 2 + i N A G i S B 2 N A G i S B 2 4 = N A G B 2 - N A G -1 S B 2 + i N A G i S B 2 N A G i S B 2
54 7 53 eqtrd U NrmCVec A X B X 4 A P B = N A G B 2 - N A G -1 S B 2 + i N A G i S B 2 N A G i S B 2