Metamath Proof Explorer


Theorem 4noncolr3

Description: A way to express 4 non-colinear atoms (rotated right 3 places). (Contributed by NM, 11-Jul-2012)

Ref Expression
Hypotheses 3noncol.l ˙ = K
3noncol.j ˙ = join K
3noncol.a A = Atoms K
Assertion 4noncolr3 K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R Q R ¬ S ˙ Q ˙ R ¬ P ˙ Q ˙ R ˙ S

Proof

Step Hyp Ref Expression
1 3noncol.l ˙ = K
2 3noncol.j ˙ = join K
3 3noncol.a A = Atoms K
4 simp11 K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R K HL
5 4 hllatd K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R K Lat
6 simp2l K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R R A
7 eqid Base K = Base K
8 7 3 atbase R A R Base K
9 6 8 syl K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R R Base K
10 simp12 K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R P A
11 7 3 atbase P A P Base K
12 10 11 syl K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R P Base K
13 simp13 K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R Q A
14 7 3 atbase Q A Q Base K
15 13 14 syl K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R Q Base K
16 simp32 K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R ¬ R ˙ P ˙ Q
17 7 1 2 latnlej1r K Lat R Base K P Base K Q Base K ¬ R ˙ P ˙ Q R Q
18 5 9 12 15 16 17 syl131anc K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R R Q
19 18 necomd K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R Q R
20 simp2r K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R S A
21 7 3 atbase S A S Base K
22 20 21 syl K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R S Base K
23 7 2 latjcl K Lat Q Base K R Base K Q ˙ R Base K
24 5 15 9 23 syl3anc K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R Q ˙ R Base K
25 simp33 K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R ¬ S ˙ P ˙ Q ˙ R
26 2 3 hlatjass K HL P A Q A R A P ˙ Q ˙ R = P ˙ Q ˙ R
27 4 10 13 6 26 syl13anc K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R P ˙ Q ˙ R = P ˙ Q ˙ R
28 27 breq2d K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R S ˙ P ˙ Q ˙ R S ˙ P ˙ Q ˙ R
29 25 28 mtbid K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R ¬ S ˙ P ˙ Q ˙ R
30 7 1 2 latnlej2r K Lat S Base K P Base K Q ˙ R Base K ¬ S ˙ P ˙ Q ˙ R ¬ S ˙ Q ˙ R
31 5 22 12 24 29 30 syl131anc K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R ¬ S ˙ Q ˙ R
32 simp31 K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R P Q
33 1 2 3 hlatexch1 K HL P A R A Q A P Q P ˙ Q ˙ R R ˙ Q ˙ P
34 4 10 6 13 32 33 syl131anc K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R P ˙ Q ˙ R R ˙ Q ˙ P
35 7 2 latjcom K Lat P Base K Q Base K P ˙ Q = Q ˙ P
36 5 12 15 35 syl3anc K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R P ˙ Q = Q ˙ P
37 36 breq2d K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R R ˙ P ˙ Q R ˙ Q ˙ P
38 34 37 sylibrd K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R P ˙ Q ˙ R R ˙ P ˙ Q
39 16 38 mtod K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R ¬ P ˙ Q ˙ R
40 7 1 2 3 hlexch1 K HL P A S A Q ˙ R Base K ¬ P ˙ Q ˙ R P ˙ Q ˙ R ˙ S S ˙ Q ˙ R ˙ P
41 4 10 20 24 39 40 syl131anc K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R P ˙ Q ˙ R ˙ S S ˙ Q ˙ R ˙ P
42 7 2 latjcom K Lat Q Base K R Base K Q ˙ R = R ˙ Q
43 5 15 9 42 syl3anc K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R Q ˙ R = R ˙ Q
44 43 oveq1d K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R Q ˙ R ˙ P = R ˙ Q ˙ P
45 7 2 latj31 K Lat R Base K Q Base K P Base K R ˙ Q ˙ P = P ˙ Q ˙ R
46 5 9 15 12 45 syl13anc K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R R ˙ Q ˙ P = P ˙ Q ˙ R
47 44 46 eqtrd K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R Q ˙ R ˙ P = P ˙ Q ˙ R
48 47 breq2d K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R S ˙ Q ˙ R ˙ P S ˙ P ˙ Q ˙ R
49 41 48 sylibd K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R P ˙ Q ˙ R ˙ S S ˙ P ˙ Q ˙ R
50 25 49 mtod K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R ¬ P ˙ Q ˙ R ˙ S
51 19 31 50 3jca K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R Q R ¬ S ˙ Q ˙ R ¬ P ˙ Q ˙ R ˙ S