Step |
Hyp |
Ref |
Expression |
1 |
|
3noncol.l |
|
2 |
|
3noncol.j |
|
3 |
|
3noncol.a |
|
4 |
|
simp11 |
|
5 |
4
|
hllatd |
|
6 |
|
simp2l |
|
7 |
|
eqid |
|
8 |
7 3
|
atbase |
|
9 |
6 8
|
syl |
|
10 |
|
simp12 |
|
11 |
7 3
|
atbase |
|
12 |
10 11
|
syl |
|
13 |
|
simp13 |
|
14 |
7 3
|
atbase |
|
15 |
13 14
|
syl |
|
16 |
|
simp32 |
|
17 |
7 1 2
|
latnlej1r |
|
18 |
5 9 12 15 16 17
|
syl131anc |
|
19 |
18
|
necomd |
|
20 |
|
simp2r |
|
21 |
7 3
|
atbase |
|
22 |
20 21
|
syl |
|
23 |
7 2
|
latjcl |
|
24 |
5 15 9 23
|
syl3anc |
|
25 |
|
simp33 |
|
26 |
2 3
|
hlatjass |
|
27 |
4 10 13 6 26
|
syl13anc |
|
28 |
27
|
breq2d |
|
29 |
25 28
|
mtbid |
|
30 |
7 1 2
|
latnlej2r |
|
31 |
5 22 12 24 29 30
|
syl131anc |
|
32 |
|
simp31 |
|
33 |
1 2 3
|
hlatexch1 |
|
34 |
4 10 6 13 32 33
|
syl131anc |
|
35 |
7 2
|
latjcom |
|
36 |
5 12 15 35
|
syl3anc |
|
37 |
36
|
breq2d |
|
38 |
34 37
|
sylibrd |
|
39 |
16 38
|
mtod |
|
40 |
7 1 2 3
|
hlexch1 |
|
41 |
4 10 20 24 39 40
|
syl131anc |
|
42 |
7 2
|
latjcom |
|
43 |
5 15 9 42
|
syl3anc |
|
44 |
43
|
oveq1d |
|
45 |
7 2
|
latj31 |
|
46 |
5 9 15 12 45
|
syl13anc |
|
47 |
44 46
|
eqtrd |
|
48 |
47
|
breq2d |
|
49 |
41 48
|
sylibd |
|
50 |
25 49
|
mtod |
|
51 |
19 31 50
|
3jca |
|