Metamath Proof Explorer


Theorem 4p2e6

Description: 4 + 2 = 6. (Contributed by NM, 11-May-2004)

Ref Expression
Assertion 4p2e6 4 + 2 = 6

Proof

Step Hyp Ref Expression
1 df-2 2 = 1 + 1
2 1 oveq2i 4 + 2 = 4 + 1 + 1
3 4cn 4
4 ax-1cn 1
5 3 4 4 addassi 4 + 1 + 1 = 4 + 1 + 1
6 2 5 eqtr4i 4 + 2 = 4 + 1 + 1
7 df-5 5 = 4 + 1
8 7 oveq1i 5 + 1 = 4 + 1 + 1
9 6 8 eqtr4i 4 + 2 = 5 + 1
10 df-6 6 = 5 + 1
11 9 10 eqtr4i 4 + 2 = 6