Metamath Proof Explorer


Theorem 4p4e8

Description: 4 + 4 = 8. (Contributed by NM, 11-May-2004)

Ref Expression
Assertion 4p4e8 4 + 4 = 8

Proof

Step Hyp Ref Expression
1 df-4 4 = 3 + 1
2 1 oveq2i 4 + 4 = 4 + 3 + 1
3 4cn 4
4 3cn 3
5 ax-1cn 1
6 3 4 5 addassi 4 + 3 + 1 = 4 + 3 + 1
7 2 6 eqtr4i 4 + 4 = 4 + 3 + 1
8 df-8 8 = 7 + 1
9 4p3e7 4 + 3 = 7
10 9 oveq1i 4 + 3 + 1 = 7 + 1
11 8 10 eqtr4i 8 = 4 + 3 + 1
12 7 11 eqtr4i 4 + 4 = 8